
Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

 
 
 
 
 
 
Power.org™ Standard for Embedded Power Architecture™ Platform Requirements 
(ePAPR) 

Version 1.1 – 08 April 2011 
 
Copyright © 2008,2011 Power.org. All rights reserved.  
 
The Power Architecture and Power.org word marks and the Power and Power.org logos 
and related marks are trademarks and service marks licensed by Power.org. 
Implementation of certain elements of this document may require licenses under third 
party intellectual property rights, including without limitation, patent rights. Power.org 
and its Members are not, and shall not be held, responsible in any manner for identifying 
or failing to identify any or all such third party intellectual property rights.  
THIS POWER.ORG SPECIFICATION PROVIDED “AS IS” AND WITHOUT ANY WARRANTY OF 
ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF 
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 
IN NO EVENT SHALL POWER.ORG OR ANY MEMBER OF POWER.ORG BE LIABLE FOR ANY 
DIRECT, INDIRECT, SPECIAL, EXEMPLARY, PUNITIVE, OR CONSEQUENTIAL DAMAGES, 
INCLUDING, WITHOUT LIMITATION, LOST PROFITS, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGES. 
 
 
Questions pertaining to this document, or the terms or conditions of its provision, should 
be addressed to: 
 
IEEE-ISTO 
445 Hoes Lane 
Piscataway, NJ 08854 
Attn: Power.org Board Secretary 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 2 of 108 
 

 
LICENSE INFORMATION 
 
© Copyright 2008,2011 Power.org, Inc 
 
© Copyright Freescale Semiconductor, Inc., 2008,2011 
 
© Copyright International Business Machines Corporation, 2008,2011 
 
All Rights Reserved. 
 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 3 of 108 
 

Table of Contents 
 

REVISION HISTORY ................................................................................................................................... 7 

1 INTRODUCTION .............................................................................................................................. 8 

1.1 PURPOSE AND SCOPE ............................................................................................................................. 8 
1.2 RELATIONSHIP TO IEEE™ 1275 ............................................................................................................. 10 
1.3 32-BIT AND 64-BIT SUPPORT ................................................................................................................ 10 
1.4 REFERENCES ....................................................................................................................................... 11 
1.5 DEFINITION OF TERMS .......................................................................................................................... 13 

2 THE DEVICE TREE .......................................................................................................................... 14 

2.1 OVERVIEW ......................................................................................................................................... 14 
2.2 DEVICE TREE STRUCTURE AND CONVENTIONS ........................................................................................... 15 

2.2.1 Node Names ......................................................................................................................... 15 
2.2.2 Generic Names Recommendation ........................................................................................ 17 
2.2.3 Path Names .......................................................................................................................... 18 
2.2.4 Properties .............................................................................................................................. 18 

2.3 STANDARD PROPERTIES ........................................................................................................................ 21 
2.3.1 compatible ............................................................................................................................ 21 
2.3.2 model .................................................................................................................................... 21 
2.3.3 phandle ................................................................................................................................. 22 
2.3.4 status .................................................................................................................................... 23 
2.3.5 #address-cells and #size-cells ............................................................................................... 24 
2.3.6 reg ......................................................................................................................................... 25 
2.3.7 virtual-reg ............................................................................................................................. 25 
2.3.8 ranges ................................................................................................................................... 26 
2.3.9 dma-ranges ........................................................................................................................... 28 
2.3.10 name ................................................................................................................................ 29 
2.3.11 device_type ...................................................................................................................... 29 

2.4 INTERRUPTS AND INTERRUPT MAPPING ................................................................................................... 30 
2.4.1 Properties for Interrupt Generating Devices ......................................................................... 32 
2.4.2 Properties for Interrupt Controllers ...................................................................................... 33 
2.4.3 Interrupt Nexus Properties .................................................................................................... 33 
2.4.4 Interrupt Mapping Example .................................................................................................. 35 

3 DEVICE NODE REQUIREMENTS ...................................................................................................... 37 

3.1 BASE DEVICE NODE TYPES .................................................................................................................... 37 
3.2 ROOT NODE ....................................................................................................................................... 37 
3.3 ALIASES NODE ..................................................................................................................................... 38 
3.4 MEMORY NODE .................................................................................................................................. 39 
3.5 CHOSEN ............................................................................................................................................ 40 
3.6 CPUS NODE PROPERTIES ..................................................................................................................... 41 
3.7 CPU NODE PROPERTIES ....................................................................................................................... 41 

3.7.1 General Properties of CPU nodes .......................................................................................... 42 
3.7.2 TLB Properties ....................................................................................................................... 44 
3.7.3 Internal (L1) Cache Properties .............................................................................................. 45 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 4 of 108 
 

3.7.4 Example ................................................................................................................................ 46 
3.8 MULTI-LEVEL AND SHARED CACHES ........................................................................................................ 46 

4 CLIENT PROGRAM IMAGE FORMAT .............................................................................................. 48 

4.1 VARIABLE ADDRESS IMAGE FORMAT ....................................................................................................... 48 
4.1.1 ELF Basics .............................................................................................................................. 48 
4.1.2 Boot Program Requirements ................................................................................................ 48 
4.1.3 Client Program Requirements ............................................................................................... 49 

4.2 FIXED ADDRESS IMAGE FORMAT ............................................................................................................ 50 

5 CLIENT PROGRAM BOOT REQUIREMENTS ..................................................................................... 51 

5.1 BOOT AND SECONDARY CPUS ............................................................................................................... 51 
5.2 DEVICE TREE ...................................................................................................................................... 51 
5.3 INITIAL MAPPED AREAS ........................................................................................................................ 51 
5.4 CPU ENTRY POINT REQUIREMENTS ........................................................................................................ 52 

5.4.1 Boot CPU Initial Register State.............................................................................................. 52 
5.4.2 I/O Devices State ................................................................................................................... 53 
5.4.3 Initial I/O Mappings (IIO) ...................................................................................................... 53 
5.4.4 Boot CPU Entry Requirements: Real Mode ........................................................................... 54 
5.4.5 Boot CPU Entry Requirements for IMAs: Book IIII-E .............................................................. 54 

5.5 SYMMETRIC MULTIPROCESSING (SMP) BOOT REQUIREMENTS .................................................................... 55 
5.5.1 Overview ............................................................................................................................... 55 
5.5.2 Spin Table ............................................................................................................................. 56 
5.5.3 Implementation-Specific Release from Reset ....................................................................... 59 
5.5.4 Timebase Synchronization .................................................................................................... 59 

5.6 ASYMMETRIC CONFIGURATION CONSIDERATIONS ...................................................................................... 59 

6 DEVICE BINDINGS ......................................................................................................................... 60 

6.1 BINDING GUIDELINES ........................................................................................................................... 60 
6.1.1 General Principles ................................................................................................................. 60 
6.1.2 Miscellaneous Properties ...................................................................................................... 61 

6.2 SERIAL DEVICES ................................................................................................................................... 62 
6.2.1 Serial Class Binding ............................................................................................................... 62 
6.2.2 National Semiconductor 16450/16550 Compatible UART Requirements ............................ 63 

6.3 NETWORK DEVICES .............................................................................................................................. 63 
6.3.1 Network Class Binding .......................................................................................................... 63 
6.3.2 Ethernet specific considerations ........................................................................................... 64 

6.4 OPEN PIC INTERRUPT CONTROLLERS ....................................................................................................... 66 
6.5 SIMPLE-BUS ........................................................................................................................................ 66 

7 VIRTUALIZATION ........................................................................................................................... 67 

7.1 OVERVIEW ......................................................................................................................................... 67 
7.2 HYPERCALL APPLICATION BINARY INTERFACE (ABI) ................................................................................... 67 
7.3 EPAPR HYPERCALL TOKEN DEFINITION ................................................................................................... 68 
7.4 HYPERCALL RETURN CODES ................................................................................................................... 69 
7.5 HYPERVISOR NODE .............................................................................................................................. 70 
7.6 EPAPR VIRTUAL INTERRUPT CONTROLLER SERVICES .................................................................................. 71 

7.6.1 Virtual Interrupt Controller Device Tree Representation ...................................................... 71 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 5 of 108 
 

7.6.2 ePAPR Interrupt Controller Hypercalls .................................................................................. 73 
7.7 BYTE-CHANNEL SERVICES ...................................................................................................................... 80 

7.7.1 Overview ............................................................................................................................... 80 
7.7.2 Interrupts and Guest Device Tree Representation ................................................................ 81 
7.7.3 Byte-channel Hypercalls........................................................................................................ 82 

7.8 INTER-PARTITION DOORBELLS ................................................................................................................ 84 
7.8.1 Overview ............................................................................................................................... 84 
7.8.2 Doorbell Send Endpoints ....................................................................................................... 84 
7.8.3 Doorbell Receive Endpoints .................................................................................................. 84 
7.8.4 Doorbell Hypercall ................................................................................................................ 85 

7.9 MSGSND ............................................................................................................................................ 85 
7.9.1 EV_MSGSND ......................................................................................................................... 85 

7.10 IDLE ............................................................................................................................................. 86 
EV_IDLE ............................................................................................................................................... 86 

8 FLAT DEVICE TREE PHYSICAL STRUCTURE ...................................................................................... 87 

8.1 VERSIONING ....................................................................................................................................... 87 
8.2 HEADER ............................................................................................................................................ 88 
8.3 MEMORY RESERVATION BLOCK.............................................................................................................. 89 

8.3.1 Purpose ................................................................................................................................. 89 
8.3.2 Format .................................................................................................................................. 90 

8.4 STRUCTURE BLOCK .............................................................................................................................. 91 
8.4.1 Lexical structure .................................................................................................................... 91 
8.4.2 Tree structure ....................................................................................................................... 92 

8.5 STRINGS BLOCK .................................................................................................................................. 93 
8.6 ALIGNMENT ....................................................................................................................................... 94 

APPENDIX A  DEVICE TREE SOURCE FORMAT (VERSION 1) ..................................................................... 95 

APPENDIX B1  EBONY DEVICE TREE ........................................................................................................ 97 

APPENDIX B2 – MPC8572DS DEVICE TREE ............................................................................................ 104 

 
 
 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 6 of 108 
 

  
Acknowledgements 
 
The power.org Platform Architecture Technical Subcommittee would like thank the many individuals 
and companies that contributed to the development this specification through writing,  technical 
discussions and reviews.   
 
Individuals (in alphabetical order) 

Hollis Blanchard 
Dan Bouvier 
Josh Boyer 
Becky Bruce 
Dale Farnsworth 
Kumar Gala 
David Gibson 
Ben Herrenschmidt 
Dan Hettena 
Olof Johansson 
Ashish Kalra 
Grant Likely 
Jon Loeliger 
Hartmut Penner 
Tim Radzykewycz 
Heiko Schick 
Timur Tabi 
John Traill 
John True 
Matt Tyrlik 
Dave Willoughby 
Scott Wood 
Jimi Xenidis 
Stuart Yoder 

 
Companies 

Freescale Semiconductor 
Green Hills Software 
IBM 
Montavista 
Wind River 

 
Other Acknowledgements 
 
Significant aspects of the ePAPR device tree are based on work done by the Open Firmware Working 
Group which developed bindings for IEEE-1275.  We would like to acknowledge their contributions. 
 
We would also like to acknowledge the contribution of the PowerPC Linux community that initially 
developed and implemented the flattened device tree concept. 
 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 7 of 108 
 

Revision History 
 
 
Revision Date Description 
1.0 7/23/2008 Initial Version 
1.1 3/7/2011 Updates include: virtualization chapter, consolidated representation of cpu 

nodes, stdin/stdout properties on /chosen, label property, representation of 
hardware threads on cpu nodes, representation of Power ISA categories on 
cpu nodes, mmu type property, removal of some bindings, additional cpu 
entry requirements for threaded cpus, miscellaneous cleanup and 
clarifications. 

 



Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

1 Introduction 1 

1.1 Purpose and Scope 2 
 3 
To initialize and boot a computer system, various software components interact—firmware might 4 
perform low-level initialization of the system hardware before passing control to software such as an 5 
operating system, bootloader, or hypervisor. Bootloaders and hypervisors can, in turn, load and 6 
transfer control to operating systems. Standard, consistent interfaces and conventions facilitate the 7 
interactions between these software components. In this document the term boot program is used to 8 
generically refer to a software component that initializes the system state and executes another 9 
software component referred to as a client program. Examples of a boot programs include: firmware, 10 
bootloaders, and hypervisors. Examples of a client program include: bootloaders, hypervisors, 11 
operating systems, and special purpose programs.   A piece of software (e.g. a hypervisor) may be 12 
both a client program and a boot program. 13 
 14 
This specification, the Embedded Power Architecture Platform Requirements (ePAPR), provides a 15 
complete boot program to client program interface definition, combined with minimum system 16 
requirements that facilitate the development of a wide variety of embedded systems based on CPUs 17 
that implement the Power architecture as defined in the Power ISA™ [1].  18 
 19 
This specification is targeted towards the requirements of embedded systems. An embedded system 20 
typically consists of system hardware, an operating system, and application software that are custom 21 
designed to perform a fixed, specific set of tasks. This is unlike general purpose computers, which are 22 
designed to be customized by a user with a variety of software and I/O devices. Other characteristics 23 
of embedded systems can include: 24 

• a fixed set of I/O devices, possibly highly customized for the application 25 
• a system board optimized for size and cost 26 
• limited user interface 27 
• resource constraints like limited memory and limited nonvolatile storage 28 
• real-time constraints  29 
• use of a wide variety of operating systems, including Linux, real-time operating systems, and 30 

custom or proprietary operating systems 31 
 32 
 33 

34 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 9 of 108 
 

 1 
Organization of this Document 2 
 3 

• Chapter 1 introduces the architecture being specified by the ePAPR. 4 
• Chapter 2 introduces the device tree concept and describes its logical structure and standard 5 

properties. 6 
• Chapter 3 specifies the definition of a base set of device nodes required by ePAPR-compliant 7 

device trees. 8 
Chapter 4 specifies the ELF client program image format. 9 

• Chapter 5 specifies the requirements for boot programs to start client programs on single and 10 
multiple CPU systems. 11 

• Chapter 6 describes device bindings for certain classes of devices and specific device types. 12 
• Chapter 7 describes ePAPR virtualization extensions--  hypercall ABI, hypercall APIs, and 13 

device tree conventions related to virtualization. 14 
• Chapter 8 specifies the physical structure of device trees. 15 

 16 
 17 
 18 
Conventions Used in this Document 19 

The word shall is used to indicate mandatory requirements strictly to be followed in order to conform 20 
to the standard and from which no deviation is permitted (shall equals is required to). 21 

The word should is used to indicate that among several possibilities one is recommended as 22 
particularly suitable, without mentioning or excluding others; or that a certain course of action is 23 
preferred but not necessarily required; or that (in the negative form) a certain course of action is 24 
deprecated but not prohibited (should equals is recommended that). 25 

The word may is used to indicate a course of action permissible within the limits of the standard (may 26 
equals is permitted). 27 
Examples of device tree constructs are frequently shown in Device Tree Syntax form. See Appendix A  28 
Device Tree Source Format (version 1) for an overview of this syntax. 29 

30 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 10 of 108 
 

1.2 Relationship to IEEE™ 1275 1 
 2 
The ePAPR is loosely related to the IEEE 1275 Open Firmware standard—IEEE Standard for Boot 3 
(Initialization Configuration) Firmware: Core Requirements and Practices [2]. 4 
 5 
The original IEEE 1275 specification and its derivatives such as CHRP [10] and PAPR [16] address 6 
problems of general purpose computers, such as how a single version of an operating system can work 7 
on several different computers within the same family and the problem of loading an operating system 8 
from user-installed I/O devices. 9 
 10 
Because of the nature of embedded systems, some of these problems faced by open, general purpose 11 
computers do not apply. Notable features of the IEEE 1275 specification that are omitted from the 12 
ePAPR include: 13 

• Plug-in device drivers 14 
• FCode 15 
• The programmable Open Firmware user interface based on Forth 16 
• FCode debugging 17 
• Operating system debugging 18 

 19 
What is retained from IEEE-1275 are concepts from the device tree architecture by which a boot 20 
program can describe and communicate system hardware information to client program, thus 21 
eliminating the need for the client program to have hard-coded descriptions of system hardware. 22 

1.3 32-bit and 64-bit Support 23 
 24 
The ePAPR supports CPUs with both 32-bit and 64-bit addressing capabilities. Where applicable, 25 
sections of the ePAPR describe any requirements or considerations for 32-bit and 64-bit addressing. 26 
 27 
 28 

29 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 11 of 108 
 

1.4 References 1 
 2 
1. Power ISA™, Version 2.06 Revision B, July 23, 2010. It is available from power.org 3 
(http://power.org). 4 
 5 
2. Boot (Initialization Configuration) Firmware: Core Requirements and Practices, 1994. This is the 6 
core standard (also known as IEEE 1275) that defines the device tree concept adopted by the ePAPR. 7 
It is available from Global Engineering (http://global.ihs.com/). 8 
 9 
3. PowerPC Processor Binding to IEEE 1275-1994 Standard for Boot (Initialization, Configuration) 10 
Firmware. Version 2.1 1996.  Published by the Open Firmware Working Group. 11 
(http://playground.sun.com/1275/bindings/ppc/release/ppc-2_1.html). This document specifies the 12 
PowerPC processor specific binding to the base standard. 13 
 14 
4. booting-without-of.txt (Ben Herrenschmidt, Becky Bruce, et al.). From the Linux kernel source tree 15 
(http://www.kernel.org/).  Describes the device tree as used by the Linux kernel. 16 
 17 
5. Device Trees Everywhere. By .David Gibson and Ben Herrenschmidt 18 
(http://ozlabs.org/~dgibson/home/papers/dtc-paper.pdf). An overview of the concept of the device tree 19 
and device tree compiler. 20 
 21 
6. PCI Bus Binding to: IEEE Std 1275-1994 Standard for Boot (Initialization Configuration) 22 
Firmware, Revision 2.1. 1998. Published by the Open Firmware Working Group. 23 
(http://playground.sun.com/1275/bindings/pci/pci2_1.pdf) 24 
 25 
7. Open Firmware Recommended Practice: Interrupt Mapping, Version 0.9. 1996. Published by the 26 
Open Firmware Working Group. (http://playground.sun.com/1275/practice/imap/imap0_9d.pdf) 27 
 28 
8. Open Firmware Recommended Practice: Device Support Extensions, Version 1.0, 1997. Published 29 
by the Open Firmware Working Group. 30 
(http://playground.sun.com/1275/practice/devicex/dse1_0a.html) This document describes the binding 31 
for various device types such as network, RTC, keyboard, sound, etc. 32 
 33 
9. Open Firmware Recommended Practice: Universal Serial Bus Binding to IEEE 1275, Version 1, 34 
1998. Published by the Open Firmware Working Group. 35 
(http://playground.sun.com/1275/bindings/usb/usb-1_0.ps) 36 
 37 
10. PowerPC Microprocessor Common Hardware Reference Platform (CHRP) Binding, Version 1.8, 38 
1998. Published by the Open Firmware Working Group. 39 
(http://playground.sun.com/1275/bindings/chrp/chrp1_8a.ps). This document specifies the properties 40 
for Open PIC-compatible interrupt controllers. 41 
 42 
11. CHRP ISA Interrupt Controller Device Binding, Unapproved Draft version 1.1, Aug 19, 1996, 43 
Published by the Open Firmware Working Group. 44 
(http://playground.sun.com/1275/bindings/devices/postscript/isa-pic-1_1d.ps) 45 
 46 

http://playground.sun.com/1275/bindings/usb/usb-1_0.ps�
http://playground.sun.com/1275/bindings/chrp/chrp1_8a.ps�
http://playground.sun.com/1275/bindings/chrp/chrp1_8a.ps�
http://playground.sun.com/1275/bindings/chrp/chrp1_8a.ps�


Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 12 of 108 
 

12. The Open Programmable Interrupt Controller (PIC) Register Interface Specification Revision 1.2, 1 
October 1995. Advanced Micro Devices and Cyrix Corporation. 2 
 3 
13. PCI Local Bus Specification, Revision 2.2. Published by the PCI Special Interest Group. 4 
 5 
14. PCI Express Base Specification, Revision 1.0a. Published by the PCI Special Interest Group. 6 
 7 
15. PCI-Express Binding to OF. P1275 Openboot Working Group Proposal dated 18 August 2004. 8 
 9 
16. Power.org Standard for Power Architecture Platform Requirements, Published by power.org. 10 
 11 
17. System V Application Binary Interface, Edition 4.1, 1997, Published by The Santa Cruz Operation, 12 
Inc. 13 
 14 
18. The Open Programmable Interrupt Controller (PIC) Register Interface Specification Revision 1.2, 15 
AMD and Cyrix. October 1995. 16 
 17 
19. RFC 2119, Key words for use in RFCs to Indicate Requirement Levels 18 
http://www.ietf.org/rfc/rfc2119.txt 19 
 20 
20. 64-bit PowerPC ELF Application Binary Interface Supplement 1.9. By Ian Lance Taylor. 2004. 21 
 22 
 23 
 24 

25 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 13 of 108 
 

  1 

1.5 Definition of Terms 2 
 3 

• AMP. Asymmetric Multiprocessing. Computer architecture where two or more CPUs are 4 
executing different tasks.  Typically, an AMP system executes different operating system 5 
images on separate CPUs. 6 

• boot CPU. The first CPU which a boot program directs to a client program’s entry point. 7 
• Book III-E. Embedded Environment. Section of the Power ISA defining supervisor 8 

instructions and related facilities used in embedded Power processor implementations. 9 
• boot program.  Used to generically refer to a software component that initializes the system 10 

state and executes another software component referred to as a client program. Examples of a 11 
boot programs include: firmware, bootloaders, and hypervisors.  Examples of a client 12 
program include: bootloaders, hypervisors, operating systems, and special purpose programs. 13 

• client program. Program that typically contains application or operating system software. 14 
• cell. A unit of information consisting of 32 bits. 15 
• DMA. Direct memory access 16 
• DTB. Device tree blob. Compact binary representation of the device tree. 17 
• DTC. Device tree compiler. An open source tool used to create DTB files from DTS files. 18 
• DTS. Device tree syntax. A textual representation of a device tree consumed by the DTC. See 19 

Appendix A  Device Tree Source Format (version 1). 20 
• effective address. Memory address as computed by processor storage access or branch 21 

instruction. 22 
• physical address. Address used by the processor to access external device, typically a 23 

memory controller. The Power ISA uses the real address when referring to a physical address. 24 
• Power ISA. Power Instruction Set Architecture. 25 
• interrupt specifier. A property value that describes an interrupt. Typically information that 26 

specifies an interrupt number and sensitivity and triggering mechanism is included. 27 
• secondary CPU. CPUs other than the boot CPU that belong to the client program are 28 

considered secondary CPUs. 29 
• SMP. Symmetric multiprocessing. A computer architecture where two or more identical 30 

CPUs can execute the same task. Typically an SMP system executes a single operating 31 
system image. 32 

• SOC. System on a chip. A single computer chip integrating one or more CPU core as well as 33 
number of other peripherals. 34 

• unit address. The part of a node name specifying the node’s address in the address space of 35 
the parent node. 36 

• quiescent CPU. A quiescent CPU is in a state where it cannot interfere with the normal 37 
operation of other CPUs, nor can its state be affected by the normal operation of other 38 
running CPUs, except by an explicit method for enabling or re-enabling the quiescent CPU.  39 

  40 

41 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 14 of 108 
 

2 The Device Tree 1 

2.1 Overview 2 
The ePAPR specifies a construct called a device tree to describe system hardware. A boot program 3 
loads a device tree into a client program’s memory and passes a pointer to the device tree to the client. 4 
 5 
This chapter describes the logical structure of the device tree and specifies a base set of properties for 6 
use in describing device nodes. Chapter 3 specifies certain device nodes required by an ePAPR-7 
compliant device tree. Chapter 6 describes the ePAPR defined device bindings— the requirements for 8 
representing certain device types classes of devices. Chapter 8 describes the in-memory encoding of 9 
the device tree. 10 
 11 
A device tree is a tree data structure with nodes that describe the devices in a system. Each node has 12 
property/value pairs that describe the characteristics of the device being represented. Each node has 13 
exactly one parent except for the root node, which has no parent. 14 
 15 
An ePAPR-compliant device tree describes device information in a system that cannot necessarily be 16 
dynamically detected by a client program. For example, the architecture of PCI enables a client to 17 
probe and detect attached devices, and thus device tree nodes describing PCI devices might not be 18 
required. However, a device node is required to describe a PCI host bridge device in the system if it 19 
cannot be detected by probing.  20 
 21 
Example 22 
Figure 2-1 shows an example representation of a simple device tree that is nearly complete enough to 23 
boot a simple operating system, with the platform type, CPU, and memory described. Device nodes 24 
are shown with properties and values shown beside the node. 25 
 26 

 27 
 28 

cpus 

model = "fsl,mpc8572ds"; 
compatible = "fsl,mpc8572ds"; 
#address-cells = <1>; 
#size-cells = <1>;   

#address-cells = <1>; 
#size-cells = <0>; 

/ 

Figure 2-1 

device_type = "cpu"; 
reg = <0>; 
cache-line-size = <32>;     
cache-block-size = <0x8000>; 
timebase-frequency = <825000000>; 
clock-frequency = <825000000>;  

cpu@0 

memory 
device_type = "memory"; 
reg = <0x00000000 0x20000000>; 

chosen bootargs = "root=/dev/sda2"; 
 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 15 of 108 
 

2.2 Device Tree Structure and Conventions 1 

2.2.1 Node Names 2 

2.2.1.1 Node Name Requirements 3 
 4 
Each node in the device tree is named according to the following convention: 5 
 6 

node-name@unit-address  7 
 8 
The node-name component specifies the name of the node. It shall be 1 to 31 characters in length and 9 
consist solely of characters from the set of characters in Table 2-1. 10 
 11 

Table 2-1 Characters for node names 12 
Character Description 
0-9 digit 
a-z lowercase letter 
A-Z uppercase letter 
, comma 
. period 
_ underscore 
+ plus sign 
- dash 

 13 
The node-name shall start with a lower or uppercase character and should describe the general class of 14 
device. 15 
 16 
The unit-address component of the name is specific to the bus type on which the node sits. It consists 17 
of one or more ASCII characters from the set of characters in Table 2-1.   The unit-address must 18 
match the first address specified in the reg property of the node.  If the node has no reg property, the 19 
@ and unit-address must be omitted and the node-name alone differentiates the node from other nodes 20 
at the same level in the tree.  The binding for a particular bus may specify additional, more specific 21 
requirements for the format of reg and the unit-address. 22 
 23 
The root node does not have a node-name or unit-address. It is identified by a forward slash (/). 24 
 25 

26 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 16 of 108 
 

Example 1 
 2 
See the node names examples in Figure 2-2. 3 
 4 

 5 
 6 
 7 
In the example: 8 

• The nodes with the name cpu are distinguished by their unit-address values of 0 and 1. 9 
• The nodes with the name ethernet are distinguished by their unit-address values of 10 

FE001000 and FE002000. 11 
 12 

13 

/ 
cpus 

cpu@0 

cpu@1 

ethernet@fe001000 

ethernet@fe002000 

Figure 2-2 
 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 17 of 108 
 

2.2.2 Generic Names Recommendation 1 
 2 
The name of a node should be somewhat generic, reflecting the function of the device and not its 3 
precise programming model. If appropriate, the name should be one of the following choices: 4 
 5 

• atm 6 
• cache-controller 7 
• compact-flash 8 
• can 9 
• cpu 10 
• crypto 11 
• disk 12 
• display 13 
• dma-controller 14 
• ethernet 15 
• ethernet-phy 16 
• fdc 17 
• flash 18 
• gpio 19 
• i2c 20 
• ide 21 
• interrupt-controller 22 
• isa 23 
• keyboard 24 
• mdio 25 
• memory 26 
• memory-controller 27 
• mouse 28 
• nvram 29 
• parallel 30 
• pc-card 31 
• pci 32 
• pcie 33 
• rtc 34 
• sata 35 
• scsi 36 
• serial 37 
• sound 38 
• spi 39 
• timer 40 
• usb 41 
• vme 42 
• watchdog 43 

 44 
45 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 18 of 108 
 

2.2.3 Path Names 1 
 2 
A node in the device tree can be uniquely identified by specifying the full path from the root node, 3 
through all descendant nodes, to the desired node. 4 
 5 
The convention for specifying a device path is: 6 
 7 

/node-name-1/node-name-2/node-name-N 8 
 9 
For example, in Figure 2-2 the device path to cpu #1 would be: 10 
 11 

/cpus/cpu@1 12 
  13 
The path to the root node is /. 14 
 15 
A unit address may be omitted if the full path to the node is unambiguous. 16 
 17 
If a client program encounters an ambiguous path, its behavior is undefined. 18 

2.2.4 Properties 19 
Each node in the device tree has properties that describe the characteristics of the node. Properties 20 
consist of a name and a value. 21 

2.2.4.1 Proper ty Names 22 
Property names are strings of 1 to 31 characters from the following set of characters. 23 
 24 

Table 2-2 Characters for property names 25 
Character Description 

0-9 digit 
a-z lowercase letter 
, comma 
. period 
_ underscore 
+ plus sign 
- dash 
? question mark 
# hash 

 26 
Nonstandard property names should specify a unique string prefix, such as a stock ticker symbol, 27 
identifying the name of the company or organization that defined the property.  Examples:  28 

fsl,channel-fifo-len 29 
ibm,ppc-interrupt-server#s 30 
linux,network-index 31 

 32 
33 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 19 of 108 
 

2.2.4.2 Proper ty Values 1 
 2 
A property value is an array of zero or more bytes that contain information associated with the 3 
property. 4 
 5 
Properties might have an empty value if conveying true-false information. In this case, the presence or 6 
absence of the property is sufficiently descriptive. 7 
 8 
Table 2-3 describes the set of basic value types defined by the ePAPR. 9 
 10 

Table 2-3 Property values 11 
Value Description 

<empty> Value is empty—used for conveying true-false information, when the 
presence of absence of the property itself is sufficiently descriptive. 

<u32> A 32-bit integer in big-endian format. Example: the 32-bit value 
0x11223344 would be represented in memory as: 
 

address 
address+1 
address+2 
address+3 

 

11 
22 
33 
44 

 

<u64> Represents a 64-bit integer in big-endian format. Consists of two <u32> 
values where the first value contains the most significant bits of the integer 
and the second value contains the least significant bits. 
 
Example: the 64-bit value 0x1122334455667788 would be represented as 
two cells as: <0x11223344 0x55667788>. 
 
The value would be represented in memory as: 
 

address 
address+1 
address+2 
address+3 
address+4 
address+5 
address+6 
address+7 

 

11 
22 
33 
44 
55 
66 
77 
88 

 
 

12 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 20 of 108 
 

 1 
<string> Strings are printable and null-terminated. Example: the string “hello” would 

be represented in memory as: 
 

address 
address+1 
address+2 
address+3 
address+4 
address+5 

 

68 
65 
6C 
6C 
6F 
00 

 

<prop-encoded-array> Format is specific to the property. See the property definition. 
 

<phandle> A <u32> value. A phandle value is a way to reference another node in the 
device tree. Any node that can be referenced defines a phandle property 
with a unique <u32> value. That unique number is specified for the value of 
properties with a phandle value type.  
 

<stringlist> A list of <string> values concatenated together. Example: The string list 
“hello”,“world” would be represented in memory as: 
 

address 
address+1 
address+2 
address+3 
address+4 
address+5 
address+6 
address+7 
address+8 
address+9 
address+10 
address+11 

 

68 
65 
6C 
6C 
6F 
00 
77 
6F 
72 
6C 
64 
00 

 

 2 
 3 

4 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 21 of 108 
 

2.3 Standard Properties 1 
 2 
The ePAPR specifies a set of standard properties for device nodes. These properties are described in 3 
detail in this section.  Device nodes defined by the ePAPR (see Chapter 3, Device Node 4 
Requirements) may specify additional requirements or constraints regarding the use of the standard 5 
properties. Device bindings (Chapter 6) that describe the representation of specific devices may also 6 
specify additional requirements. 7 
 8 
Note: All examples of device tree nodes in this document use the Device Tree Source (DTS) format 9 
for specifying nodes and properties. 10 

2.3.1 compatible 11 
 12 
Property: compatible 13 
Value type: <stringlist> 14 
Description: 15 

The compatible property value consists of one or more strings that define the specific 16 
programming model for the device. This list of strings should be used by a client program for 17 
device driver selection. The property value consists of a concatenated list of null terminated 18 
strings, from most specific to most general. They allow a device to express its compatibility 19 
with a family of similar devices, potentially allowing a single device driver to match against 20 
several devices. 21 
 22 
The recommended format is “manufacturer,model”, where manufacturer is a 23 
string describing the name of the manufacturer (such as a stock ticker symbol), and model 24 
specifies the model number. 25 
 26 

Example: 27 
compatible = “fsl,mpc8641-uart”, “ns16550"; 28 
 29 
In this example, an operating system would first try to locate a device driver that supported 30 
fsl,mpc8641-uart. If a driver was not found, it would then try to locate a driver that supported 31 
the more general ns16550 device type. 32 

2.3.2 model 33 
 34 
Property: model 35 
Value type: <string> 36 
Description: 37 

The model property value is a <string> that specifies the manufacturer’s model number of the 38 
device. 39 
 40 
The recommended format is: “manufacturer,model”, where manufacturer is a 41 
string describing the name of the manufacturer (such as a stock ticker symbol), and model 42 
specifies the model number. 43 
 44 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 22 of 108 
 

Example: 1 
model = “fsl,MPC8349EMITX”; 2 

 3 

2.3.3 phandle 4 
 5 
Property: phandle 6 
Value type: <u32> 7 
Description: 8 

The phandle property specifies a numerical identifier for a node that is unique within the 9 
device tree. The phandle property value is used by other nodes that need to refer to the node 10 
associated with the property. 11 
 12 

Example: 13 
 14 

See the following device tree excerpt: 15 
 16 

pic@10000000 { 17 
phandle = <1>; 18 
interrupt-controller; 19 

}; 20 
 21 
A phandle value of 1 is defined. Another device node could reference the pic node with a 22 
phandle value of 1: 23 
 24 

interrupt-parent = <1>; 25 
 26 

 27 
Compatibility Note 
 
Older versions of device trees may be encountered that contain a deprecated form of this 
property called linux,phandle.  For compatibility, a client program might want to 
support linux,phandle if a phandle property is not present.  The meaning and use of 
the two properties is identical. 
 

 28 
Programming Note 
 
Most device trees in Device Tree Syntax (DTS) (see Appendix A) will not contain explicit 
phandle properties. The DTC tool automatically inserts the phandle properties when the DTS 
is compiled into the binary DTB format. 
 

 29 

 30 
31 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 23 of 108 
 

2.3.4 status 1 
Property: status 2 
Value type: <string> 3 
Description: 4 

The status property indicates the operational status of a device. Valid values are listed and 5 
defined in the following table. 6 
 7 

Table 2-4 Values for status property 8 
Value Description 

“okay” Indicates the device is operational 
“disabled” Indicates that the device is not presently operational, but it might 

become operational in the future (for example, something is not 
plugged in, or switched off). 
 
Refer to the device binding for details on what disabled means for 
a given device. 

“fail” Indicates that the device is not operational. A serious error was 
detected in the device, and it is unlikely to become operational 
without repair. 

“fail-sss” Indicates that the device is not operational. A serious error was 
detected in the device and it is unlikely to become operational 
without repair. The sss portion of the value is specific to the 
device and indicates the error condition detected. 

 9 
10 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 24 of 108 
 

2.3.5 #address-cells and #size-cells 1 
 2 
Property: #address-cells, #size-cells 3 
Value type: <u32> 4 
Description: 5 

The #address-cells and #size-cells properties may be used in any device node that has 6 
children in the device tree hierarchy and describes how child device nodes should be 7 
addressed. The #address-cells property defines the number of <u32> cells used to encode the 8 
address field in a child node’s reg property.  The #size-cells property defines the number of 9 
<u32> cells used to encode the size field in a child node’s reg property.  10 
 11 
The #address-cells and #size-cells properties are not inherited from ancestors in the device 12 
tree. They shall be explicitly defined. 13 
 14 
An ePAPR-compliant boot program shall supply #address-cells and #size-cells on all nodes 15 
that have children. 16 
 17 
If missing, a client program should assume a default value of 2 for #address-cells, and a value 18 
of 1 for #size-cells. 19 

 20 
Example 21 
 22 

See the device tree fragment shown in Figure 2-3. 23 
 24 

 25 
 26 

In Figure 2-3 , the #address-cells and #size-cells properties of the soc node are both set to 1. 27 
This setting specifies that one cell is required to represent an address and  one cell is required 28 
to represent the size of nodes that are children of this node. 29 
 30 
The serial device reg property necessarily follows this specification set in the parent (soc) 31 
node—the address is represented by a single cell (0x4600), and the size is represented by a 32 
single cell (0x100). 33 

34 

soc 

serial 

Figure 2-3 

#address-cells = <1>; 
#size-cells = <1>; 
 

compatible = "ns16550"; 
reg = <0x4600 0x100>; 
clock-frequency = <0>; 
interrupts = <0xA 0x8>; 
interrupt-parent = < &ipic >; 
 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 25 of 108 
 

2.3.6 reg 1 
 2 
Property: reg 3 
Value type: <prop-encoded-array> encoded as arbitrary number of (address,length) pairs. 4 
Description: 5 

The reg property describes the address of the device's resources within the address space defined by 6 
its parent bus. Most commonly this means the offsets and lengths of memory-mapped IO register 7 
blocks, but may have a different meaning on some bus types.  Addresses in the address space defined 8 
by root node are cpu real addresses. 9 

 10 
The value is a <prop-encoded-array>, composed of an arbitrary number of pairs of address 11 
and length, <address length>.  The number of <u32> cells required to specify the address 12 
and length are bus-specific and are specified by the #address-cells and #size-cells properties 13 
in the parent of the device node. If the parent node specifies a value of 0 for #size-cells, the 14 
length field in the value of reg shall be omitted. 15 

 16 
Example: 17 

Suppose a device within a system-on-a-chip had two blocks of registers—a 32-byte block at 18 
offset 0x3000 in the SOC and a 256-byte block at offset 0xFE00. The reg property would be 19 
encoded as follows (assuming #address-cells and #size-cells values of 1): 20 
 21 

reg = <0x3000 0x20 0xFE00 0x100>; 22 
 23 

2.3.7 virtual-reg 24 
Property: virtual-reg 25 
Value type: <u32> 26 
Description: 27 

The virtual-reg property specifies an effective address that maps to the first physical address 28 
specified in the reg property of the device node. This property enables boot programs to 29 
provide client programs with virtual-to-physical mappings that have been set up. 30 

31 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 26 of 108 
 

2.3.8 ranges 1 
 2 
Property: ranges 3 
Value type: <empty> or <prop-encoded-array> encoded as arbitrary number of triplets of (child-bus-4 
address, parent-bus-address, length). 5 
Description: 6 

The ranges property provides a means of defining a mapping or translation between the 7 
address space of the bus (the child address space) and the address space of the bus node's 8 
parent (the parent address space). 9 
 10 
The format of the value of the ranges property is an arbitrary number of triplets of (child-bus-11 
address, parent-bus-address, length) 12 
 13 

• The child-bus-address is a physical address within the child bus’ address space. The 14 
number of cells to represent the address is bus dependent and can be determined from 15 
the #address-cells of this node (the node in which the ranges property appears). 16 

 17 
• The parent-bus-address is a physical address within the parent bus’ address space. 18 

The number of cells to represent the parent address is bus dependent and can be 19 
determined from the #address-cells property of the node that defines the parent’s 20 
address space. 21 

 22 
• The length specifies the size of the range in the child’s address space. The number of 23 

cells to represent the size can be determined from the #size-cells of this node (the 24 
node in which the ranges property appears). 25 

 26 
If the property is defined with an <empty> value, it specifies that the parent and child address 27 
space is identical, and no address translation is required. 28 
 29 
If the property is not present in a bus node, it is assumed that no mapping exists between 30 
children of the node and the parent address space. 31 

 32 
33 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 27 of 108 
 

See the example in Figure 2-4. 1 
 2 

 3 
 4 
In Figure 2-4 , the soc node specifies a ranges property of  5 

 6 
 <0x0 0xe0000000 0x00100000>; 7 

 8 
This property value specifies that for an 1024KB range of address space, a child node 9 
addressed at physical 0x0 maps to a parent address of physical 0xe0000000. With this 10 
mapping, the serial device node can be addressed by a load or store at address 11 
0xe0004600, an offset of 0x4600 (specified in reg) plus the 0xe0000000 mapping specified in 12 
ranges. 13 
 14 

15 

soc 

serial 

compatible = "simple-bus"; 
#address-cells = <1>; 
#size-cells = <1>; 
ranges = <0x0 0xe0000000 0x00100000>; 
      

device_type = "serial"; 
compatible = "ns16550"; 
reg = <0x4600 0x100>; 
clock-frequency = <0>; 
interrupts = <0xA 0x8>; 
interrupt-parent = < &ipic >; 
 

Figure 2-4 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 28 of 108 
 

2.3.9 dma-ranges 1 
 2 
Property: dma-ranges 3 
Value type: <empty> or <prop-encoded-array> encoded as arbitrary number of triplets of (child-bus-4 
address, parent-bus-address, length). 5 
Description: 6 

The dma-ranges property is used to describe the direct memory access (DMA) structure of a 7 
memory-mapped bus whose device tree parent can be accessed from DMA operations 8 
originating from the bus. It provides a means of defining a mapping or translation between the 9 
physical address space of the bus and the physical address space of the parent of the bus.  10 
 11 
The format of the value of the dma-ranges property is an arbitrary number of triplets of 12 
(child-bus-address, parent-bus-address, length). Each triplet specified describes a contiguous 13 
DMA address range. 14 
 15 

• The child-bus-address is a physical address within the child bus’ address space. The 16 
number of cells to represent the address depends on the bus and can be determined 17 
from the #address-cells of this node (the node in which the dma-ranges property 18 
appears). 19 

 20 
• The parent-bus-address is a physical address within the parent bus’ address space. 21 

The number of cells to represent the parent address is bus dependent and can be 22 
determined from the #address-cells property of the node that defines the parent’s 23 
address space. 24 

 25 
• The length specifies the size of the range in the child’s address space. The number of 26 

cells to represent the size can be determined from the #size-cells of this node (the 27 
node in which the dma-ranges property appears). 28 

29 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 29 of 108 
 

2.3.10 name 1 
 2 
Compatibility Note 
 
Property: name 
Value type: <string> 
Description: 

The name property is a string specifying the name of the node.  This property is deprecated, 
and its use is not recommended.  However, it might be used in older non-ePAPR-compliant 
device trees. 
 
Operating system should determine a node’s name based on the name component of the node 
name (see section 2.2.1). 

 
 3 

2.3.11 device_type 4 
 5 
Property: device_type 6 
Value type: <string> 7 
Description: 8 

The device_type property was used in IEEE 1275 to describe the device’s FCode 9 
programming model. Because ePAPR does not have FCode, new use of the property is 10 
deprecated, and it should be included only on cpu and memory nodes for compatibility with 11 
IEEE 1275–derived device trees. 12 

13 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 30 of 108 
 

2.4 Interrupts and Interrupt Mapping 1 
 2 
The ePAPR adopts the interrupt tree model of representing interrupts specified in Open Firmware 3 
Recommended Practice: Interrupt Mapping, Version 0.9 [7]. Within the device tree a logical interrupt 4 
tree exists that represents the hierarchy and routing of interrupts in the platform hardware. While 5 
generically referred to as an interrupt tree it is more technically a directed acyclic graph. 6 
  7 
The physical wiring of an interrupt source to an interrupt controller is represented in the device tree 8 
with the interrupt-parent property. Nodes that represent interrupt-generating devices contain an 9 
interrupt-parent property which has a phandle value that points to the device to which the device's 10 
interrupts are routed, typically an interrupt controller. If an interrupt-generating device does not have 11 
an interrupt-parent property, its interrupt parent is assumed to be its device tree parent. 12 
 13 
Each interrupt generating device contains an interrupts property with a value describing one or more 14 
interrupt sources for that device—each source represented with information called an interrupt 15 
specifier.  The format and meaning of an interrupt specifier is interrupt domain specific, i.e., it is 16 
dependent on properties on the node at the root of its interrupt domain.  The #interrupt-cells property 17 
is used by the root of an interrupt domain to define the number of <u32> values needed to encode an 18 
interrupt specifier.   For example, for an Open PIC interrupt controller, an interrupt-specifer takes two 19 
32-bit values and consists of an interrupt number and level/sense information for the interrupt. 20 
 21 
An interrupt domain is the context in which an interrupt specifier is interpreted. The root of the 22 
domain is either (1) an interrupt controller or (2) an interrupt nexus. 23 
 24 

1. An interrupt controller is physical device and will need a driver to handle interrupts routed 25 
through it. It may also cascade into another interrupt domain. An interrupt controller is 26 
specified by the presence of an interrupt-controller property on that node in the device tree. 27 

 28 
2. An interrupt nexus defines a translation between one interrupt domain and another. The 29 

translation is based on both domain-specific and bus-specific information. This translation 30 
between domains is performed with the interrupt-map property. For example, a PCI controller 31 
device node could be an interrupt nexus that defines a translation from the PCI interrupt 32 
namespace (INTA, INTB, etc.) to an interrupt controller with Interrupt Request (IRQ) 33 
numbers. 34 

 35 
The root of the interrupt tree is determined when traversal of the interrupt tree reaches an interrupt 36 
controller node without an interrupts property and thus no explicit interrupt parent. 37 
 38 

39 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 31 of 108 
 

See Figure 2-5  for an example of a graphical representation of a device tree with interrupt parent 1 
relationships shown. Figure 2-6 shows the corresponding interrupt tree. 2 
 3 

   4 
 5 

  6 
 7 

/ 
simple bus 

device1 

device2 

pci-host-bridge 

slot0 

slot1 

open-pic 

pci-pci bridge 

Device Tree 

slot0 

Figure 2-5 
 

interrupt-parent = <&open-pic>; 
 

interrupt-parent = <&open-pic>; 
 

interrupt-parent = <&open-pic>; 
 

interrupt-parent = <&pci-host-bridge>; 
 

interrupt-parent = <&pci-host-bridge>; 
 

interrupt-parent = <&pci-host-bridge>; 
 

interrupt-parent = <&pci-pci-bridge>; 
 

Interrupt Tree 

device1 

device2 

PCI host bridge 

slot0 

slot1 

open-pic 

PCI-PCI bridge 

slot0 

interrupt 
domains 

nexus 
nodes 

Figure 2-6 
 

Root of the 
interrupt 
tree 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 32 of 108 
 

In the example shown in Figure 2-5 and Figure 2-6 : 1 
• The open-pic interrupt controller is the root of the interrupt tree. 2 
• The interrupt tree root has three children—devices that route their interrupts directly to the 3 

open-pic 4 
o device1 5 
o device2 6 
o PCI bus controller 7 

• Three interrupt domains exist—one rooted at the open-pic node, one at the PCI host 8 
bridge node, and one at the PCI-PCI bridge node. 9 

• There are two nexus nodes— one at the PCI host bridge and one at the PCI-PCI 10 
bridge 11 

2.4.1 Properties for Interrupt Generating Devices 12 

2.4.1.1 inter rupts  13 
 14 
Property: interrupts 15 
Value type: <prop-encoded-array> encoded as arbitrary number of interrupt specifiers 16 
Description: 17 

The interrupts property of a device node defines the interrupt or interrupts that are generated 18 
by the device. The value of the interrupts property consists of an arbitrary number of interrupt 19 
specifiers. The format of an interrupt specifier is defined by the binding of the interrupt 20 
domain root. 21 

 22 
Example: 23 

A common definition of an interrupt specifier in an open PIC–compatible interrupt domain 24 
consists of two cells—an interrupt number and level/sense information.  See the following 25 
example, which defines a single interrupt specifier, with an interrupt number of 0xA and 26 
level/sense encoding of 8. 27 

 28 
interrupts = <0xA 8>; 29 

2.4.1.2 inter rupt-parent  30 
 31 
Property: interrupt-parent 32 
Value type: <phandle> 33 
Description: 34 

Because the hierarchy of the nodes in the interrupt tree might not match the device tree, the 35 
interrupt-parent property is available to make the definition of an interrupt parent explicit. 36 
The value is the phandle to the interrupt parent. If this property is missing from a device, its 37 
interrupt parent is assumed to be its device tree parent. 38 

39 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 33 of 108 
 

2.4.2 Properties for Interrupt Controllers 1 

2.4.2.1 #inter rupt-cells 2 
 3 
Property: #interrupt-cells 4 
Value type: <u32> 5 
Description: 6 

The #interrupt-cells property defines the number of cells required to encode an interrupt 7 
specifier for an interrupt domain. 8 

2.4.2.2 inter rupt-controller   9 
 10 
Property: interrupt-controller 11 
Value type: <empty> 12 
Description: 13 

The presence of an interrupt-controller property defines a node as an interrupt controller node. 14 
 15 

2.4.3 Interrupt Nexus Properties 16 
 17 
An interrupt nexus node shall have an #interrupt-cells property. 18 

2.4.3.1 inter rupt-map  19 
 20 
Property: interrupt-map 21 
Value type: <prop-encoded-array> encoded as an arbitrary number of interrupt mapping entries. 22 
Description: 23 

An interrupt-map is a property on a nexus node that bridges one interrupt domain with a set 24 
of parent interrupt domains and specifies how interrupt specifiers in the child domain are 25 
mapped to their respective parent domains. 26 
 27 
The interrupt map is a table where each row is a mapping entry consisting of five 28 
components: child unit address, child interrupt specifier, interrupt-parent, parent unit 29 
address, parent interrupt specifier. 30 
 31 

• child unit address. The unit address of the child node being mapped. The number of 32 
32-bit cells required to specify this is described by the #address-cells property of the 33 
bus node on which the child is located. 34 

 35 
• child interrupt specifier. The interrupt specifier of the child node being mapped. 36 

The number of 32-bit cells required to specify this component is described by the 37 
#interrupt-cells property of this node—the nexus node containing the interrupt-map 38 
property. 39 

 40 
• interrupt-parent . A single <phandle> value that points to the interrupt parent to 41 

which the child domain is being mapped. 42 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 34 of 108 
 

 1 
• parent unit address. The unit address in the domain of the interrupt parent. The 2 

number of 32-bit cells required to specify this address is described by the #address-3 
cells property of the node pointed to by the interrupt-parent field. 4 

 5 
• parent interrupt specifier. The interrupt specifier in the parent domain. The number 6 

of 32-bit cells required to specify this component is described by the #interrupt-cells 7 
property of this node—the nexus node containing the interrupt-map property. 8 

 9 
Lookups are performed on the interrupt mapping table by matching a unit-address/interrupt 10 
specifier pair against the child components in the interrupt-map.  Because some fields in the 11 
unit interrupt specifier may not be relevant, a mask is applied before the lookup is done. This 12 
mask is defined in the interrupt-map-mask property (see section 2.4.3.2). 13 
 14 
Note: Both the child node and the interrupt parent node are required to have #address-cells 15 
and #interrupt-cells properties defined.  If a unit address component is not required, 16 
#address-cells shall be explicitly defined to be zero. 17 

2.4.3.2 inter rupt-map-mask  18 
 19 
Property: interrupt-map-mask 20 
Value type: <prop-encoded-array> encoded as a bit mask 21 
Description: 22 

An interrupt-map-mask property is specified for a nexus node in the interrupt tree. This 23 
property specifies a mask that is applied to the incoming unit interrupt specifier being looked 24 
up in the table specified in the interrupt-map property. 25 

2.4.3.3 #inter rupts-cells 26 
 27 
Property: #interrupts-cells 28 
Value type: <u32> 29 
Description: 30 

The #interrupt-cells property defines the number of cells required to encode an interrupt 31 
specifier for an interrupt domain. 32 

 33 
34 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 35 of 108 
 

2.4.4 Interrupt Mapping Example 1 
 2 
Figure 2-7 shows the representation of a fragment of a device tree with a PCI bus controller and  a 3 
sample interrupt map for describing the interrupt routing for two PCI slots (IDSEL 0x11,0x12). The 4 
INTA, INTB, INTC, and INTD pins for slots 1 and 2 are wired to the Open PIC interrupt controller. 5 
 6 

 7 
 8 
 9 

• One Open PIC interrupt controller is represented and is identified as an interrupt controller 10 
with an interrupt-controller property. 11 

 12 
• Each row in the interrupt-map table consists of five parts—a child unit address and interrupt 13 

specifier, which is mapped to an interrupt-parent node with a specified parent unit address 14 
and interrupt specifier. 15 

 16 
17 

soc 

open-pic 

compatible = "simple-bus"; 
#address-cells = <1>; 
#size-cells = <1>; 
   

open-pic: 
 clock-frequency = <0>; 
 interrupt-controller; 
 #address-cells = <0>; 
 #interrupt-cells = <2>; 

/ 

pci 

#interrupt-cells = <1>; 
#size-cells = <2>; 
#address-cells = <3>; 
interrupt-map-mask = <0xf800 0 0 7>; 
interrupt-map = < 
  /* IDSEL 0x11 - PCI slot 1 */ 
  0x8800 0 0 1 &open-pic 2 1  /* INTA */ 
  0x8800 0 0 2 &open-pic 3 1  /* INTB */ 
  0x8800 0 0 3 &open-pic 4 1  /* INTC */ 
  0x8800 0 0 4 &open-pic 1 1  /* INTD */ 
 
  /* IDSEL 0x12 - PCI slot 2 */ 
  0x9000 0 0 1 &open-pic 3 1  /* INTA */ 
  0x9000 0 0 2 &open-pic 4 1  /* INTB */ 
  0x9000 0 0 3 &open-pic 1 1  /* INTC */ 
  0x9000 0 0 4 &open-pic 2 1  /* INTD */ 
 >; 

Figure 
2 7 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 36 of 108 
 

• For example, the first row of the interrupt-map table specifies the mapping for INTA of slot 1. 1 
The components of that row are shown in the following diagram. 2 

 3 
o The child unit address is <0x8800 0 0>. This value is encoded with three 32-bit 4 

cells, which is determined by the value of the #address-cells property (value of 3) of 5 
the PCI controller. The three cells represent the PCI address as described by the 6 
binding for the PCI bus. 7 
 The encoding includes the bus number (0x0 << 16), device number (0x11 8 

<< 11), and function number (0x0 << 8). 9 
o The child interrupt specifier is <1>, which specifies INTA as described by the PCI 10 

binding. This takes one 32-bit cell as specified by the #interrupt-cells property (value 11 
of 1) of the PCI controller, which is the child interrupt domain. 12 

o The interrupt parent is specified by a phandle which points to the interrupt parent of 13 
the slot, the Open PIC interrupt controller. 14 

o The parent has no unit address because the parent interrupt domain (the open-pic 15 
node) has an #address-cells value of 0. 16 

o The parent interrupt specifier is <2 1>. The number of cells to represent the 17 
interrupt specifier (two cells) is determined by the #interrupt-cells property on the 18 
interrupt parent, the open-pic node.  19 
 The value <2 1> is a value specified by the device binding for the Open 20 

PIC interrupt controller (see section 6.5). The value <2> specifies the 21 
physical interrupt source number on the interrupt controller to which INTA 22 
is wired.  The value <1> specifies the level/sense encoding. 23 

• In this example, the interrupt-map-mask property has a value of <0xf800 0 0 7>. This 24 
mask is applied to a child unit interrupt specifier before performing a lookup in the interrupt-25 
map table. 26 

• Example: To perform a lookup of the open-pic interrupt source number for INTB for IDSEL 27 
0x12 (slot 2), function 0x3, the following steps would be performed: 28 

o The child unit address and interrupt specifier form the value <0x9300 0 0 2>. 29 
 The encoding of the address includes the bus number (0x0 << 16), device 30 

number (0x12 << 11), and function number (0x3 << 8). 31 
 The interrupt specifier is 2, which is the encoding for INTB as per the PCI 32 

binding. 33 
o The interrupt-map-mask value <0xf800 0 0 7> is applied, giving a result of 34 

<0x9000 0 0 2>. 35 
o That result is looked up in the interrupt-map table, which maps to the parent interrupt 36 

specifier <4 1>. 37 
 38 
 39 
 40 

41 

0x8800 0 0 &open-pic 

 
2 1 

 interrupt parent child unit 
address 

parent  
interrupt 
specifier 

1  
child  

interrupt 
specifier 

parent  
unit address 

is empty 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 37 of 108 
 

3 Device Node Requirements 1 
 2 

3.1 Base Device Node Types 3 
 4 
The sections that follow specify the requirements for the base set of device nodes required in an 5 
ePAPR-compliant device tree. 6 
 7 
All device trees shall have a root node and the following nodes shall be present at the root of all 8 
device trees: 9 

• One cpus node 10 
• At least one memory node 11 

3.2 Root node 12 
 13 
The device tree has a single root node of which all other device nodes are descendants. The full path 14 
to the root node is /. 15 

 16 
Properties 17 

Table 3-1 Root node properties 18 
Property Name Usage Value 

Type 
Definition 

#address-cells R <u32> Specifies the number of <u32> cells to represent the address in the reg 
property in children of root.  

#size-cells R <u32> Specifies the number of <u32> cells to represent the size in the reg property 
in children of root. 

model R <string> Specifies a string that uniquely identifies the model of the system board. The 
recommended format is “manufacturer,model-number”. 

compatible R <stringlist> Specifies a list of platform architectures with which this platform is 
compatible. This property can be used by operating systems in selecting 
platform specific code. The recommended form of the property value is: 

“<Manufacturer>,<Model-number>” 
 
For example: 

compatible = “fsl,mpc8572ds” 
 

epapr-version R <string> This property shall contain the string: 
 “ePAPR-<ePAPR version>” 

where: 
• <ePAPR version> is the text (without blanks) after the word 

Version on the cover page of the PAPR spec that the platform 
adheres to 

 
For example: 

epapr-version = “ePAPR-1.1” 
 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 19 
20 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 38 of 108 
 

3.3 aliases node 1 
 2 
A device tree may have an aliases node (/aliases) that defines one or more alias properties. The 3 
alias node shall be at the root of the device tree and have the node name aliases. 4 
 5 
Each property of the /aliases node defines an alias. The property name specifies the alias name. 6 
The property value specifies the full path to a node in the device tree. For example, the property 7 
serial0 = “/simple-bus@fe000000/serial@llc500” defines the alias serial0. 8 
 9 
Alias names shall be a lowercase text strings of 1 to 31 characters from the following set of characters. 10 
 11 

Table 3-2 Characters for alias names 12 
Character Description 
0-9 digit 
a-z lowercase character 
- dash 

 13 
An alias value is a device path and is encoded as a string. The value represents the full path to a node, 14 
but the path does not need to refer to a leaf node. 15 
 16 
A client program may use an alias property name to refer to a full device path as all or part of its string 17 
value. A client program, when considering a string as a device path, shall detect and use the alias. 18 
 19 
Example: 20 
 21 
  aliases { 22 
   serial0 = "/simple-bus@fe000000/serial@llc500"; 23 
   ethernet0 = "/simple-bus@fe000000/ethernet@31c000"; 24 
  } 25 
 26 
Given the alias serial0, a client program can look at the /aliases node and determine the alias 27 
refers  to the device path /simple-bus@fe000000/serial@llc500. 28 

29 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 39 of 108 
 

3.4 Memory node 1 
 2 
A memory device node is required for all device trees and describes the physical memory layout for 3 
the system. If a system has multiple ranges of memory, multiple memory nodes can be created, or the 4 
ranges can be specified in the reg property of a single memory node. 5 
 6 
The name component of the node name (see 2.2.1) shall be memory. 7 
 8 
The client program may access memory not covered by any memory reservations (see section 8.3) 9 
using any storage attributes it chooses. However, before changing the storage attributes used to access 10 
a real page, the client program is responsible for performing actions required by the architecture and 11 
implementation, possibly including flushing the real page from the caches. The boot program is 12 
responsible for ensuring that, without taking any action associated with a change in storage attributes, 13 
the client program can safely access all memory (including memory covered by memory reservations) 14 
as WIMG = 0b001x.  That is: 15 

• not Write Through Required 16 
• not Caching Inhibited 17 
• Memory Coherence Required 18 
• either not Guarded or Guarded (i.e., WIMG = 0b001x) 19 

 20 
If the VLE storage attribute is supported, with VLE=0. 21 
 22 
Properties 23 

Table 3-3 Memory node properties 24 
Property Name Usage Value 

Type 
Definition 

device_type R <string> Value shall be “memory”. 
reg 
 

R <prop-
encoded-
array> 

Consists of an arbitrary number of address and size pairs that specify the 
physical address and size of the memory ranges. 

initial-mapped-area  O <prop-
encoded-
array> 

Specifies the address and size of the Initial Mapped Area (see section 5.3). 
 
Is a prop-encoded-array consisting of a triplet of (effective address, physical 
address, size). The effective and physical address shall each be 64-bit (<u64> 
value), and the size shall be 32-bits (<u32> value). 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 25 
Example 26 
 27 
Given a 64-bit Power system with the following physical memory layout: 28 

• RAM: starting address 0x0, length 0x80000000 (2GB) 29 
• RAM: starting address 0x100000000, length 0x100000000 (4GB) 30 

 31 
Memory nodes could be defined as follows, assuming an #address-cells value of 2 and a #size-cells 32 
value of 2: 33 
 34 
 35 
 36 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 40 of 108 
 

Example #1 1 
 2 
        memory@0 { 3 
            device_type = "memory"; 4 
            reg = <0x000000000 0x00000000 0x00000000 0x80000000 5 
                   0x000000001 0x00000000 0x00000001 0x00000000>; 6 
        }; 7 
 8 
Example #2 9 
 10 
        memory@0 { 11 
            device_type = "memory"; 12 
            reg = <0x000000000 0x00000000 0x00000000 0x80000000>; 13 
        }; 14 
 15 
        memory@100000000 { 16 
            device_type = "memory"; 17 
            reg = <0x000000001 0x00000000 0x00000001 0x00000000>; 18 
        }; 19 
 20 
 21 
The reg property is used to define the address and size of the two memory ranges. The 2 GB I/O 22 
region is skipped. Note that the #address-cells and #size-cells properties of the root node specify a 23 
value of 2, which means that two 32-bit cells are required to define the address and length for the reg 24 
property of the memory node. 25 

3.5 Chosen 26 
 27 
The chosen node does not represent a real device in the system but describes parameters chosen or 28 
specified by the system firmware at run time. It shall be a child of the root node. 29 
 30 
The node name (see 2.2.1) shall be chosen. 31 
 32 
Properties 33 

Table 3-4 Chosen node properties 34 
Property Name Usage Value 

Type 
Definition 

bootargs O <string> A string that specifies the boot arguments for the client program. The value 
could potentially be a null string if no boot arguments are required. 

stdout-path O <string> A string that specifies the full path to the node representing the device to be 
used for boot console output.  If the character ":" is present in the value it 
terminates the path.  The value may be an alias. 
 
If the stdin-path property is not specified, stdout-path should be assumed to 
define the input device. 

stdin-path O <string> A string that specifies the full path to the node representing the device to be 
used for boot console input.  If the character ":" is present in the value it 
terminates the path.  The value may be an alias. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 35 
 36 

37 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 41 of 108 
 

Example 1 
 2 
  chosen { 3 
    bootargs = “root=/dev/nfs rw nfsroot=192.168.1.1 console=ttyS0,115200”; 4 
  }; 5 
 6 
Compatibility Note 
 
Older versions of device trees may be encountered that contain a deprecated form of the stdout-path 
property called linux,stdout-path. For compatibility, a client program might want to support 
linux,stdout-path if a stdout-path property is not present. The meaning and use of the two properties is 
identical. 
 

 7 

3.6 CPUS Node Properties 8 
 9 
A cpus node is required for all device trees.  It does not represent a real device in the system, but acts 10 
as a container for child cpu nodes which represent the systems CPUs.  11 
 12 
The node name (see 2.2.1) shall be cpus. 13 
 14 
Properties 15 

Table 3-5 cpus node properties 16 
Property Name Usage Value 

Type 
Definition 

#address-cells 
 

R <u32>  The value specifies how many cells each element of the reg property array 
takes in children of this node. 

#size-cells 
 

R <u32> Value shall be 0. Specifies that no size is required in the reg property in 
children of this node. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 17 
The cpus node may contain properties that are common across CPU nodes.   See section 3.7 for details. 18 
 19 
For an example, see section 3.7.4.             20 

3.7 CPU Node Properties 21 
 22 
A cpu node represents a hardware execution block that is sufficiently independent that it is capable of 23 
running an operating system without interfering with other CPUs possibly running other operating 24 
systems. 25 
 26 
Hardware threads that share an MMU would generally be represented under one cpu node.  If other 27 
more complex CPU topographies are designed, the binding for the CPU must describe the topography 28 
(e.g.  threads that don't share an MMU). 29 
 30 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 42 of 108 
 

CPUs and threads are numbered through a unified number-space that should match as closely as 1 
possible the interrupt controller's numbering of CPUs/threads. 2 
 3 
Properties that have identical values across CPU nodes may be placed in the cpus node instead.  A 4 
client program must first examine a specific CPU node, but if an expected property is not found then it 5 
should look at the parent cpus node.  This results in a less verbose representation of properties which 6 
are identical across all CPUs. 7 
 8 
The node name for every cpu node (see 2.2.1) should be cpu. 9 

3.7.1 General Properties of CPU nodes 10 
The following table describes the general properties of CPU nodes. Some of the properties described 11 
in Table 3-6 are select standard properties with specific applicable detail. 12 
 13 

Table 3-6 cpu node general properties 14 
Property Name Usage Value 

Type 
Definition 

device_type R <string> Value shall be “cpu”. 
reg R <prop-

encoded-
array> 

 The value of "reg" is a <prop-encoded-array> that defines a unique 
CPU/thread id for the CPU/threads represented by the CPU node. 
 
If a CPU supports more than one thread (i.e. multiple streams of 
execution) the reg property is an array with 1 element per thread.  The 
#address-cells on the /cpus node specifies how many cells each element 
of the array takes.  Software can determine the number of threads by 
dividing the size of reg by the parent node's #address-cells. 
 
If a CPU/thread can be the target of an external interrupt the "reg" 
property value must be a unique CPU/thread id that is addressable by 
the interrupt controller. 
 
If a CPU/thread cannot be the target of an external interrupt, then "reg" 
must be unique and out of bounds of the range addressed by the 
interrupt controller 
 
If a CPU/thread's PIR is modifiable, a client program should modify 
PIR to match the "reg" property value.  If PIR cannot be modified and 
the PIR value is distinct from the interrupt controller numberspace, the 
CPUs binding may define a binding-specific representation of PIR 
values if desired. 
 

clock-frequency R <prop-
encoded-
array> 

Specifies the current clock speed of the CPU in Hertz. The value is a 
<prop-encoded-array> in one of two forms: 
 
1. A 32-bit integer consisting of one <u32> specifying the frequency. 
 
2. A 64-bit integer represented as a <u64> specifying the frequency. 
 

timebase-frequency 
 

R <prop-
encoded-
array> 

Specifies the current frequency at which the timebase and decrementer 
registers are updated (in Hertz). The value is a <prop-encoded-array> in 
one of two forms: 
1. A 32-bit integer consisting of one <u32> specifying the frequency. 
2. A 64-bit integer represented as a <u64>. 
 

cache-op-block-size SD <u32> Specifies the block size in bytes upon which cache block instructions 
operate (e.g., dcbz). Required if different than the L1 cache block size. 

reservation-granule-size SD <u32> Specifies the reservation granule size supported by this processor in 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 43 of 108 
 

bytes. 
status SD <string> A standard property describing the state of a CPU. This property shall 

be present for nodes representing CPUs in a symmetric multiprocessing 
(SMP) configuration. For a CPU node the meaning of the “okay” and 
“disabled” values are as follows: 
 

• “okay”.  The CPU is running. 
 

• “disabled”.  The CPU is in a quiescent state. A quiescent 
CPU is in a state where it cannot interfere with the normal 
operation of other CPUs, nor can its state be affected by the 
normal operation of other running CPUs, except by an 
explicit method for enabling or reenabling the quiescent 
CPU (see the enable-method property).  

 
In particular, a running CPU shall be able to issue broadcast 
TLB invalidates without affecting a quiescent CPU. 
Examples: A quiescent CPU could be in a spin loop, held in 
reset, and electrically isolated from the system bus or in 
another implementation dependent state. 

 
Note: See section 5.5 (Symmetric Multiprocessing (SMP) Boot 
Requirements) for a description of how these values are used for 
booting multi-CPU SMP systems. 

enable-method SD <stringlist> Describes the method by which a CPU in a disabled state is enabled. 
This property is required for CPUs with a status property with a value 
of “disabled”.  The value consists of one or more strings that define the 
method to release this CPU. If a client program recognizes any of the 
methods, it may use it. The value  shall be one of the following: 
 

• "spin-table" The CPU is enabled with the spin table method 
defined in the ePAPR. 

 
• "[vendor],[method]" An implementation-dependent string 

that describes the method by which a CPU is released from 
a "disabled" state. The required format is: vendor,method,. 
where vendor is a string describing the name of the 
manufacturer and method is a string describing the vendor-
specific mechanism. 

 
Example: "fsl,MPC8572DS" 

 
Note: Other methods may be added to later revisions of the ePAPR 
specification. 

cpu-release-addr SD <u64> The cpu-release-addr property is required for cpu nodes that have an 
enable-method property value of "spin-table". The value specifies the 
physical address of a spin table entry that releases a secondary CPU 
from its spin loop.  
 
See section 5.5.2, Spin Table or details on the structure of a spin table. 

power-isa-version O <string> A string that specifies the numerical portion of the Power ISA version 
string. For example, for an implementation complying with Power ISA 
Version 2.06, the value of this property would be "2.06". 

power-isa-* O <empty> If the power-isa-version property exists, then for each category from 
the Categories section of Book I of the Power ISA version indicated, 
the existence of a property named power-isa-[CAT], where [CAT] is 
the abbreviated category name with all uppercase letters converted to 
lowercase, indicates that the category is supported by the 
implementation. 
 
For example, if the power-isa-version property exists and its value is 
"2.06" and the power-isa-e.hv property exists, then the implementation 
supports [Category:Embedded.Hypervisor] as defined in Power ISA 
Version 2.06. 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 44 of 108 
 

mmu-type O <string> Specifies the CPU's MMU type. 
 
Valid values are shown below: 

"mpc8xx" 
"ppc40x" 
"ppc440" 
"ppc476" 
"power-embedded" 
"powerpc-classic" 
"power-server-stab" 
"power-server-slb" 
"none" 

 
Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 1 
Compatibility Note 
 
Older versions of device trees may be encountered that contain a bus-frequency property on 
CPU nodes. For compatibility, a client-program might want to support bus-frequency. The 
format of the value is identical to that of clock-frequency. The recommended practice is to 
represent the frequency of a bus on the bus node using a clock-frequency property. 

 2 

3.7.2 TLB Properties 3 
 4 
The following properties of a cpu node describe the translate look-aside buffer in the processor’s 5 
MMU.  6 
 7 

Table 3-7, cpu node TLB properties 8 
Property Name Usage Value 

Type 
Definition 

tlb-split SD <empty> If present specifies that the TLB has a split configuration, with separate 
TLBs for instructions and data. If absent, specifies that the TLB has a 
unified configuration. 
Required for a CPU with a TLB in a split configuration. 

tlb-size SD <u32> Specifies the number of entries in the TLB. 
Required for a CPU with a unified TLB for instruction and data addresses. 

tlb-sets SD <u32> Specifies the number of associativity sets in the TLB. 
Required for a CPU with a unified TLB for instruction and data addresses. 

d-tlb-size SD <u32> Specifies the number of entries in the data TLB. 
Required for a CPU with a split TLB configuration. 

d-tlb-sets SD <u32> Specifies the number of associativity sets in the data TLB. 
Required for a CPU with a split TLB configuration. 

i-tlb-size SD <u32> Specifies the number of entries in the instruction TLB. 
Required for a CPU with a split TLB configuration. 

i-tlb-sets SD <u32> Specifies the number of associativity sets in the instruction TLB. 
Required for a CPU with a split TLB configuration. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 9 
10 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 45 of 108 
 

3.7.3 Internal (L1) Cache Properties 1 
 2 
The following properties of a cpu node describe the processor’s internal (L1) cache.  3 
 4 

Table 3-8 Cache properties 5 
Property Name Usage Value 

Type 
Definition 

cache-unified SD <empty> If present, specifies the cache has a unified organization. If not present, 
specifies that the cache has a Harvard architecture with separate caches 
for instructions and data. 

cache-size SD <u32> Specifies the size in bytes of a unified cache.  
Required if the cache is unified (combined instructions and data). 

cache-sets SD <u32> Specifies the number of associativity sets in a unified cache.  
Required if the cache is unified (combined instructions and data) 

cache-block-size SD <u32> Specifies the block size in bytes of a unified cache. Required if the 
processor has a unified cache (combined instructions and data) 

cache-line-size SD <u32> Specifies the line size in bytes of a unified cache, if different than the 
cache block size Required if the processor has a unified cache 
(combined instructions and data). 

i-cache-size SD <u32> Specifies the size in bytes of the instruction cache. 
Required if the cpu has a separate cache for instructions. 

i-cache-sets SD <u32> Specifies the number of associativity sets in the instruction cache. 
Required if the cpu has a separate cache for instructions. 

i-cache-block-size SD <u32> Specifies the block size in bytes of the instruction cache. 
Required if the cpu has a separate cache for instructions. 

i-cache-line-size SD <u32> Specifies the line size in bytes of the instruction cache, if different than 
the cache block size. 
Required if the cpu has a separate cache for instructions. 

d-cache-size SD <u32> Specifies the size in bytes of the data cache. 
Required if the cpu has a separate cache for data. 

d-cache-sets SD <u32> Specifies the number of associativity sets in the data cache. 
Required if the cpu has a separate cache for data. 

d-cache-block-size SD <u32> Specifies the block size in bytes of the data cache. 
Required if the cpu has a separate cache for data. 

d-cache-line-size SD <u32> Specifies the line size in bytes of the data cache, if different than the 
cache block size. 
Required if the cpu has a separate cache for data. 

next-level-cache SD <phandle> If present, indicates that another level of cache exists. The value is the 
phandle of the next level of cache. The phandle value type is fully 
described in section 2.3.3. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 6 
 7 

Compatibility Note 
 
Older versions of device trees may be encountered that contain a deprecated form of the 
next-level-cache property called l2-cache.  For compatibility, a client-program may wish to 
support l2-cache if a next-level-cache property is not present.  The meaning and use of the 
two properties is identical. 
 

8 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 46 of 108 
 

3.7.4 Example 1 
 2 
Here is an example of a cpus node with one child cpu node: 3 
 4 
    cpus { 5 
        #address-cells = <1>; 6 
        #size-cells = <0>; 7 
 8 
        cpu@0 { 9 
            device_type = "cpu"; 10 
            reg = <0>; 11 
            d-cache-block-size = <32>;     // L1 - 32 bytes 12 
            i-cache-block-size = <32>;     // L1 - 32 bytes 13 
            d-cache-size = <0x8000>;      // L1, 32K 14 
            i-cache-size = <0x8000>;      // L1, 32K 15 
            timebase-frequency = <82500000>;  // 82.5 MHz 16 
            clock-frequency = <825000000>;   // 825 MHz 17 
        }; 18 
    }; 19 

 20 

3.8 Multi-level and Shared Caches 21 
 22 
Processors and systems may implement additional levels of cache hierarchy—for example, second-23 
level (L2) or third-level (L3) caches.  These caches can potentially be tightly integrated to the CPU or 24 
possibly shared between multiple CPUs. 25 
 26 
A device node with a compatible value of "cache" describes these types of caches. 27 
 28 
The cache node shall define a phandle property, and all cpu nodes or cache nodes that are associated 29 
with or share the cache each shall contain a next-level-cache property that specifies the phandle to the 30 
cache node. 31 
 32 
A cache node may be represented under a CPU node or any other appropriate location in the device 33 
tree. 34 
 35 
Multiple-level and shared caches are represented with the properties in Table 3-9. The L1 cache 36 
properties are described in Table 3-8. 37 
 38 

Table 3-9  Multiple-level and shared cache properties 39 
Property Name Usage Value 

Type 
Definition 

compatible R <string> A standard property. The value shall include the string “cache” 
cache-level R <u32> Specifies the level in the cache hierarchy. For example, a level 2 cache 

has a value of <2>. 
Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 40 
41 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 47 of 108 
 

Example 1 
 2 
See the following example of a device tree representation of two CPUs, each with their own on-chip 3 
L2 and a shared L3. 4 
 5 
    cpus { 6 
        #address-cells = <1>; 7 
        #size-cells = <0>; 8 
 9 
        cpu@0 { 10 
            device_type = "cpu"; 11 
            reg = <0>; 12 
            cache-unified; 13 
            cache-size = <0x8000>;       // L1, 32KB 14 
            cache-block-size = <32>; 15 
            timebase-frequency = <82500000>; // 82.5 MHz 16 
            next-level-cache = <&L2_0>;     // phandle to L2 17 
 18 
            L2_0:l2-cache { 19 
              compatible = “cache”; 20 
              cache-unified; 21 
              cache-size = <0x40000>;     // 256 KB 22 
              cache-sets = <1024>; 23 
              cache-block-size = <32>; 24 
              cache-level = <2>; 25 
              next-level-cache = <&L3>;   // phandle to L3 26 
 27 
              L3:l3-cache { 28 
                compatible = “cache”; 29 
                cache-unified; 30 
                cache-size = <0x40000>;    // 256 KB 31 
                cache-sets = <0x400>;     // 1024 32 
                cache-block-size = <32> 33 
                cache-level = <3>; 34 
              }; 35 
            }; 36 
        }; 37 
 38 
        cpu@1 { 39 
            device_type = "cpu"; 40 
            reg = <0>; 41 
            cache-unified; 42 
            cache-block-size = <32>; 43 
            cache-size = <0x8000>;       // L1, 32KB 44 
            timebase-frequency = <82500000>; // 82.5 MHz 45 
            clock-frequency = <825000000>;  // 825 MHz 46 
            cache-level = <2>; 47 
            next-level-cache = <&L2_1>;    // phandle to L2 48 
 49 
            L2_1:l2-cache { 50 
              compatible = “cache”; 51 
              cache-unified; 52 
              cache-size = <0x40000>;   // 256 KB 53 
              cache-sets = <0x400>;    // 1024 54 
              cache-line-size = <32>    // 32 bytes 55 
              next-level-cache = <&L3>;  // phandle to L3 56 
            }; 57 
        }; 58 
    }; 59 
 60 

61 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 48 of 108 
 

4 Client Program Image Format  1 
 2 
This section describes the image format in which an ePAPR client is encoded in order to boot it from 3 
an ePAPR-compliant boot program. Two variants on the image format are described: variable-address 4 
images and fixed-address images. ePAPR-compliant boot programs shall support client images in the 5 
variable-address format, should support images in the fixed-address format, and may also support 6 
other formats not described in this document. 7 

4.1 Variable Address Image Format 8 
 9 
This ePAPR image format is a constrained form of ELF (Executable and Linking Format, see [17]) 10 
executable. That is, an ePAPR client image shall be a valid ELF file, but also has additional 11 
requirements described in the next sections. 12 

4.1.1 ELF Basics 13 
 14 
 A variable-address client image is a 32-bit ELF client image with the following ELF header field 15 
values: 16 
 e_ident[EI_CLASS] ELFCLASS32(0x1) 17 
 e_ident[EI_DATA] ELFDATA2MSB(0x2) 18 
 e_type  ET_DYN(0x3) 19 
 e_machine  EM_PPC(0x14) 20 
 21 
That is, it is a 32-bit Power shared-object image in 2's complement, big-endian format. 22 
 23 
Every ePAPR image shall have at least one program header of type PT_LOAD. It may also have other 24 
valid ELF program headers. The client image shall be arranged so that all its ELF program headers lie 25 
within the first 1024 bytes of the image. 26 

4.1.2 Boot Program Requirements 27 
 28 
When loading a client image, the boot program need only consider ELF segments of type PT_LOAD. 29 
Other segments may be present, but should be ignored by the boot program. In particular, the boot 30 
program should not process any ELF relocations found in the client image. 31 

4.1.2.1 Processing of PT_LOAD segments 32 
 33 
The boot program shall load the contents of any PT_LOAD segments into RAM, and then pass control 34 
to the entry point specified in the ELF header in the manner specified in section 5.4. 35 
 36 
Each PT_LOAD segments shall be loaded at an address decided by the boot program, subject to the 37 
following constraints. 38 

• The load address shall be congruent with the program header’s p_paddr value, modulo with 39 
the program header’s p_align value. 40 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 49 of 108 
 

• If there is more than one PT_LOAD segment, then the difference between the loaded address 1 
and the address specified in the p_paddr field shall be the same for all segments. That is, 2 
the boot program shall preserve the relative offsets between PT_LOAD segments by physical 3 
address. 4 

 5 
The p_vaddr field is reserved to represent the effective address at which the segments will appear 6 
after the client program has performed MMU setup. The boot program should not use the program 7 
header’s p_vaddr field for determining the load address of segments.  8 

4.1.2.2 Entry point 9 
 10 
The program entry point is the address of the first instruction that is to be executed in a program image. 11 
The ELF header e_entry field gives the effective address of the program entry point.  However, as 12 
described in section 5.4, CPU Entry Point Requirements, the client program shall be entered either in 13 
real mode or with an initial MMU mapping at effective address 0x0. 14 
 15 
Therefore, the boot program shall compute the physical address of the entry point before entering the 16 
client program. To perform this calculation, it shall locate the program segment containing the entry 17 
point, determine the difference between e_entry and the p_vaddr of that segment, and add this 18 
difference to the physical address where the segment was loaded. 19 
 20 
This adjusted address will be the physical address of the first client program instruction executed after 21 
the boot program jumps to the client program.  22 

4.1.3 Client Program Requirements 23 
 24 
The client program is entered with MMU state as described in section 5.4, CPU Entry Point 25 
Requirements. Therefore, the code at the client program’s entry point shall be prepared to execute in 26 
this environment, which may be different than the MMU environment in which most of the client 27 
program executes.  The p_vaddr fields of the client’s ELF program headers will reflect this final 28 
environment, not the environment in which the entry point is executed. 29 
 30 
The code at the entry point shall be written so that it can be executed at any address. It shall establish a 31 
suitable environment in which the remainder of the client program executes. The ePAPR does not 32 
specify its method, but the task could involve: 33 
 34 

• Processing ELF relocations to relocate the client’s own image to its loaded address. Note that 35 
in this case the client image shall be specially linked so that the ELF relocation information, 36 
plus any data required to find that information is contained in both the loaded segments and 37 
the segments and sections set aside for relocation information. 38 

• Processing other tables of relocation information in some format specific to the client 39 
program. 40 

• Physically copying the client image to the address at which it prefers to execute. 41 
• Configuring the MMU so that the client image can execute at its preferred effective address, 42 

regardless of the physical address at which it is loaded.  43 
 44 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 50 of 108 
 

4.2 Fixed Address Image Format 1 
Fixed-address client images are identical to variable-address client images except for the following 2 
changes: 3 

o The e_type ELF header field shall have the value ET_EXEC (0x2). 4 
o The boot program, instead of loading each PT_LOAD segment at an address of its choosing 5 

shall load each PT_LOAD segment at the physical address given in the program header's 6 
p_paddr field. If it cannot load the segment at this address (because memory does not exist 7 
at that address or is already in use by the boot program itself), then it shall refuse to load the 8 
image and report an error condition. 9 

 10 
The fixed-address image format is intended for use by very simple clients (such as diagnostic 11 
programs), avoiding the need for such clients to physically relocate themselves to a suitable address. 12 
Clients should in general avoid using the fixed-address format, because creating a usable fixed-13 
address image requires knowing which physical areas will be available for client use on the platform 14 
in question. 15 
 16 

17 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 51 of 108 
 

5 Client Program Boot Requirements 1 

5.1 Boot and Secondary CPUs 2 
 3 
A boot cpu is the CPU on which control is transferred from the boot program to a client program. 4 
Other CPUs that belong to the client program are considered secondary CPUs. 5 
 6 
For a partition with multiple CPUs in an SMP configuration, one CPU shall be designated as the boot 7 
cpu. The unit address of the CPU node for the boot cpu is set in the boot_cpuid_phys field of the 8 
flattened device tree header (see section 8.2, Header). 9 

5.2 Device Tree 10 
 11 
A boot program shall load a device tree image into the client program’s memory before transferring 12 
control to the client on the boot cpu. The logical structure of the device tree shall comply with the 13 
requirements specified in section 3.1 (Base Device Node Types). The physical structure of the device 14 
tree image shall comply with the requirements specified in chapter 8 (Flat Device Tree Physical 15 
Structure). 16 
 17 
The loaded device tree image shall be aligned on an 8-byte boundary in the client’s memory. 18 

5.3 Initial Mapped Areas 19 
 20 
CPUs that implement the Power ISA Book III-E embedded environment, which run with address 21 
translation always enabled, have some unique boot requirements related to initial memory mappings. 22 
This section introduces the concept of an Initial Mapped Area (or IMA), which is applicable to Book 23 
III-E CPUs. 24 
 25 
A client program’s IMA is a region of memory that contains the entry points for a client program. 26 
Both boot CPUs and secondary CPUs begin client program execution in an IMA. The terms Boot IMA 27 
(BIMA) and Secondary IMA (SIMA) are used to distinguish the IMAs for boot CPUs and secondary 28 
CPUs where necessary. 29 
 30 
All IMAs have the following requirements: 31 
 32 

1. An IMA shall be virtually and physically contiguous 33 
 34 
2. An IMA shall start at effective address zero (0) which shall be mapped to a physical address 35 

naturally aligned to the size of the IMA. 36 
 37 

3. The mapping shall not be invalidated except by a client program’s explicit action (i.e., not 38 
subject to broadcast invalidates from other CPUs) 39 

 40 
4. The Translation ID (TID) field in the TLB entry or entries shall be zero. 41 

 42 
5. The memory and cache access attributes (WIMGE) have the following requirements: 43 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 52 of 108 
 

• WIMG = 001x 1 
• E=0 (i.e., big-endian) 2 
• VLE (if implemented) is set to 0 3 
 4 

6. An IMA may be mapped by a TLB entry larger than the IMA size, provided the MMU 5 
guarded attribute is set (G=1) 6 

 7 
7. An IMA may span multiple TLB entries. 8 
 9 

 10 
Programming Note 
 
Those CPUs with an IPROT capable TLB should use the IPROT facility to ensure 
requirement #3. 
 

  11 

5.4 CPU Entry Point Requirements 12 
 13 
This section describes the state of the processor and system when a boot program passes control to a 14 
client program.   15 

5.4.1 Boot CPU Initial Register State 16 
 17 
A boot CPU shall have its initial register values set as described in the following table. 18 
 19 

Table 5-1 Boot CPU initial register values 20 
Register Value 

MSR PR=0  supervisor state 
EE=0  interrupts disabled 
ME=0  machine check interrupt disabled 
IP=0  interrupt prefix-- low memory 
IR=0,DR=0  real mode (see note 1) 
IS=0,DS=0  address space 0 (see note 1) 
SF=0, CM=0, ICM=0  32-bit mode 
 
The state of any additional MSR bits is defined in the 
applicable processor supplement specification. 

R3 Effective address of the device tree image.  
Note: This address shall be 8 bytes aligned in memory. 

R4 0 
R5 0 
R6 ePAPR magic value—to distinguish from non-ePAPR-

compliant firmware 
• For Book III-E CPUs shall be 0x45504150 
• For non-Book III-E CPUs shall be 0x65504150 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 53 of 108 
 

R7 shall be the size of the boot IMA in bytes 
R8 0 
R9 0 

TCR WRC=0, no watchdog timer reset will occur (see note 2) 
other registers implementation dependent 

  1 
 2 
Note 1: Applicable only to CPUs that define these bits 3 
Note 2: Applicable to Book III-E CPUs only 4 
 5 
On a multi-threaded processor that supports [Category: Embedded Multi-Threading], the client 6 
program shall be entered on thread zero with the register values defined in the preceding table. All 7 
other threads shall be disabled and shall have register values set as defined in the preceding table 8 
except as follows: 9 
 10 

• R3 shall be zero. 11 
• R6 shall be zero. 12 
• R7 shall be zero. 13 
• PC shall be 0x4. 14 

 15 
Programming Note 
 
The boot program is expected to place a store instruction at effective address 0x0 and a branch-to-self 
instruction at effective address 0x4. The store instruction is expected to be used to set a shared 
variable indicating that the thread has reached the branch-to-self instruction and is ready to be 
disabled. 

5.4.2 I/O Devices State 16 
 17 
The boot program shall leave all devices with the following conditions true: 18 

• All devices: no DMA and not interrupting 19 
• Host bridges: responding to config cycles and passing through config cycles to children  20 

5.4.3 Initial I/O Mappings (IIO) 21 
  22 
A boot program might pass a client program a device tree containing device nodes with a virtual-reg 23 
property (see 2.3.7, virtual-reg). The virtual-reg property describes an Initial I/O (or IIO) mapping set 24 
up by firmware, and the value is the effective address of a device’s registers. 25 
  26 
For Book III-E CPUs, effective to physical address mappings shall be present in the CPU’s MMU to 27 
map any IIO. An IIO has the following requirements on Book III-E CPUs: 28 
 29 

1. An IIO shall be virtually and physically contiguous. 30 
 31 
2. An IIO shall map the effective address in virtual-reg to the physical address at which the 32 

device appears at the point of entry. 33 
 34 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 54 of 108 
 

3. An IIO shall not be invalidated except by client’s explicit action (i.e., not subject to broadcast 1 
invalidates from other partitions). 2 

 3 
4. The Translation ID (TID) field in the TLB entry shall be zero. 4 

 5 
5. The memory and cache access attributes (WIMGE) have the following requirements: 6 

• WIMG shall be suitable for accessing the device in question. Typically I=1, G=1. 7 
• E=0 (i.e., big-endian) 8 

 9 
6. An IIO shall be large enough to cover all of device’s registers. 10 
 11 
7. Multiple devices may share an IIO. 12 

5.4.4 Boot CPU Entry Requirements: Real Mode 13 
 14 
For real mode (i.e., non-Book III-E) CPUs, the following requirements apply at client entry for boot 15 
CPUs: 16 
 17 

1. The CPU shall have address translation disabled at client entry (i.e., MSR[IR]=0, 18 
MSR[DR]=0). 19 

 20 
2. All PT_LOAD segments shall be loaded into an area of memory that is appropriate for the 21 

platform. 22 
 23 
3. The device tree shall be loaded into the an area of memory that is appropriate for the platform 24 

(with the address in r3).  The device tree must not overlap any PT_LOAD segment (taking 25 
into account the p_memsz field in the program header which may be different than 26 
p_filesz). 27 

 28 
4. r7 shall contain the size of the contiguous physical memory available to the client. 29 

 30 

5.4.5 Boot CPU Entry Requirements for IMAs: Book IIII-E 31 
 32 
For Book III-E CPUs the following requirements apply at client entry for boot CPUs: 33 
 34 

1. The Boot IMA (BIMA) mapping in the MMU shall be mapped at effective address 0. 35 
 36 
2. All PT_LOAD segments shall be loaded into BIMA. 37 
 38 
3. The device tree shall be loaded into the BIMA (with the address in r3).  The device tree must 39 

not overlap any PT_LOAD segment (taking into account the p_memsz field in the program 40 
header which may be different than p_filesz). 41 

 42 
4. IIOs shall be present for all devices with a virtual-reg property 43 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 55 of 108 
 

 1 
5. Other mappings may be present in Address Space (AS) 0. 2 
 3 
6. No mappings shall be present in Address Space (AS) 1. 4 
 5 
7. r7 shall contain the size of the BIMA. 6 

 7 
8. The MMU mappings for the BIMA and all IIOs shall be such that the TLBs can 8 

accommodate a reasonable number of additional mappings. 9 
 10 

 11 
Programming Notes 
 
• A boot program might wish to select BIMA size based on client image layout in order to 

satisfy requirement #2 
 
• Client can determine physical address of IMA by either of two methods: 

1. tlbsx on EA 0, then read and parse TLB entry 
2. from the optional initial-mapped-area property on a memory node 

 
 

 13 

5.5 Symmetric Multiprocessing (SMP) Boot Requirements 14 

5.5.1  Overview 15 
 16 
For CPUs in an SMP configuration, one CPU shall be designated the boot CPU and initialized as 17 
described in section 5.4,  CPU Entry Point Requirements. All other CPUs are considered secondary. 18 
 19 
A boot program passes control to a client program on the boot CPU only. At the time the client 20 
program is started, all secondary CPUs shall in a quiescent state.  A quiescent CPU is in a state where 21 
it cannot interfere with the normal operation of other CPUs, nor can its state be affected by the normal 22 
operation of other running CPUs, except by an explicit method for enabling or re-enabling the 23 
quiescent CPU. The status property of the quiescent CPU’s cpu node in the device tree shall have a 24 
value of “disabled” (see 3.7.1, General Properties of CPU nodes). 25 
 26 
Secondary CPUs may be started using the spin table or implementation-specific mechanisms 27 
described in the following sections. 28 

 29 
30 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 56 of 108 
 

5.5.2 Spin Table 1 

5.5.2.1  Overview 2 
 3 
The ePAPR defines a spin table mechanism for starting secondary CPUs. The boot program places all 4 
secondary CPUs into a loop where each CPU spins until the branch_address field in the spin 5 
table is updated specifying that the core is released. 6 
 7 
A spin table is a table data structure consisting of 1 entry per CPU where each entry is defined as 8 
follows: 9 
 10 
    struct { 11 
  uint64_t entry_addr; 12 
  uint64_t r3; 13 
  uint32_t rsvd1; 14 
  uint32_t pir; 15 
 }; 16 
 17 
The spin table fields are defined as follows: 18 
 19 

• entry_addr. Specifies the physical address of the client entry point for the spin table code to 20 
branch to.  The boot program's spin loop must wait until the least significant bit of 21 
entry_addr is zero. 22 

 23 
• r3. Contains the value to put in the r3 register at secondary cpu entry. The high 32-bits are 24 

ignored on 32-bit chip implementations. 64-bit chip implementations however shall load all 25 
64-bits  26 

 27 
• pir. Contains a value to load into the PIR (processor identification) register for those CPUs 28 

with writable PIR. 29 
 30 

Before a secondary CPU enters a spin loop, the spin table fields shall be set with these initial values: 31 
 32 

Field Initial Value 
entry_addr 0x1 
r3 Value of the reg property from the CPU node in the device 

tree that corresponds to this CPU. 
pir A valid PIR value, different on each CPU within the same 

partition. 
 33 

 34 
The spin table shall be cache-line size aligned in memory. 35 
 36 
The boot program and client program shall ensure that all virtual pages through which the spin table 37 
can be accessed have storage control attributes such that all accesses to the spin table are not Write 38 
Through Required, not Caching Inhibited, Memory Coherence Required, and either not Guarded or 39 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 57 of 108 
 

Guarded (i.e., WIMG = 0b001x). Further, if the E storage attribute is supported, it shall be set to Big-1 
Endian (E = 0), and if the VLE storage attribute is supported, it shall be set to 0. 2 
 3 
Programming Note 
 
Some older boot programs perform Caching Inhibited and not Memory Coherence Required accesses 
to the spin table, taking advantage of implementation-specific knowledge of the behavior of accesses 
to shared storage with conflicting Caching Inhibited attribute values. If compatibility with such boot 
programs is required, client programs should use dcbf to flush a spin table entry from the caches both 
before and after accessing the spin table entry. 
 
 4 

5.5.2.2 Boot Program Requirements 5 
 6 
The boot program shall place a spin loop and spin table into an area of memory that is appropriate for 7 
the platform. If the spin loop and table reside in a memory region belonging to a client program, the 8 
memory occupied by the loop and table shall be marked reserved in the device tree’s DTB memory 9 
reservation block (see section 8.3, Memory Reservation Block). 10 
 11 
Before starting a client program on the boot cpu, the boot program shall set certain properties in the 12 
device tree passed to the client as follows: 13 

• Each secondary CPU’s cpu node shall have a status property with a value of “disabled”. 14 
• Each secondary CPU’s cpu node shall have an enable-method property. 15 
• For each secondary cpu node with an enable-method value of “spin-table”, the cpu node 16 

shall have a cpu-release-addr property that describes the address of the applicable spin table 17 
entry to release the CPU. 18 

 19 
For secondary CPUs with address translation always enabled (e.g., Book III-E), the boot program 20 
shall set up an address mapping in the secondary CPU’s MMU for the spin loop and table. 21 
 22 
The boot program shall place a spinning CPU in a quiescent state where it cannot interfere with the 23 
normal operation of other CPUs, nor can its state be affected by the normal operation of other running 24 
CPUs, except by an explicit method for enabling or reenabling the quiescent CPU. (see the enable-25 
method property).  26 
 27 
Note in particular that a running CPU shall be able to issue broadcast TLB invalidations without 28 
affecting a quiescent CPU. 29 
 30 
When a secondary CPU is released from its spin loop, its state shall be identical to the state of boot 31 
CPUs (see 5.4.1, Boot CPU Initial Register State) except as noted here: 32 

• R3 contains the value of the r3 field from the spin table (only for the first thread of the CPU). 33 
• R6 shall be 0. 34 
• If the CPU has a programmable PIR register, the PIR shall contain the value of the pir field 35 

from the spin table. 36 
• No I/O device mappings (see 5.4.3, Initial I/O Mappings (IIO)) are required. 37 
• For CPUs with address translation always enabled: 38 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 58 of 108 
 

o The Secondary IMA (SIMA) mapping (described in 5.3, Initial Mapped Areas) in the 1 
MMU shall map effective address 0 to the entry_addr field in the spin table, 2 
aligned down to the SIMA size. 3 

o R7 shall contain the size of the SIMA. 4 
o The SIMA shall have a minimum size of 1MiB. 5 
o Other mappings may be present in Address Space (AS) 0. 6 
o No mappings shall be present in Address Space (AS) 1. 7 
o The MMU mapping for the SIMA shall be such that the TLBs can accommodate a 8 

reasonable number of additional mappings. 9 
o The SIMA mapping shall not be affected by any actions taken by any other CPU. 10 

• For real mode (i.e., non-Book III-E) CPUs: 11 
o The CPU shall have address translation disabled at client entry (i.e., (MSR[IR] =0, 12 

MSR[DR]=0). 13 
o R7 shall contain the size of the contiguous physical memory available to the client. 14 

 15 
Note: Spin table entries do not need to lie in either the BIMA or SIMA. 16 
 17 

 18 
Programming Notes 
 
• A client program should physically align its secondary entry points so that the 1MiB 

SIMA size requirement  is sufficient to ensure that enough code is in the SIMA to 
transfer the secondary CPU to the client’s MMU domain (which will typically involve a 
temporary mapping in AS1) 

 
• Boot programs will typically need to establish the SIMA mapping after leaving the spin 

loop and reading the entry_addr spin table field. However, this mapping might not 
be necessary if, for example, the boot program always uses a SIMA that covers all 
RAM. 

 

 19 

5.5.2.3 Client Program Requirements 20 
 21 
When a client program is started on its boot CPU, it is passed a device tree that specifies all secondary 22 
CPUs that belong to the client, the state of those CPUs, and the address of the spin table entry to 23 
release each CPU. 24 
 25 
For each secondary CPU, the physical address of the spin table entry for the CPU is specified in the 26 
device tree in the cpu node’s cpu-release-addr property.  To activate a secondary CPU, the client 27 
program (running on the boot cpu) may write the pir field value, may write the r3 value, may write 28 
the most significant 32 bits of the entry_addr value, and shall write the least significant 32 bits of 29 
the entry_addr value. After the client has written the least significant 32 bits of the entry_addr 30 
field, the entry_addr field might subsequently be altered by the boot program. 31 
 32 
 33 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 59 of 108 
 

Programming Note 
 
The client program may use a 64-bit store instruction to write both the most significant 32 bits and the 
least significant 32 bits of the entry_addr field atomically. However, since the client program is 
permitted to use two 32-bit store instructions to write the entry_addr field (the first store for the 
most significant 32 bits and the second store for the least significant 32 bits), the boot program's spin 
loop must wait until the least significant bit of entry_addr is zero (in particular, it is insufficient 
for the boot program only to wait until entry_addr has a value other than 0x1). 
 
 1 

5.5.3  Implementation-Specific Release from Reset 2 
 3 
Some CPUs have implementation-specific mechanisms to hold CPUs in reset (or otherwise inhibit 4 
them from executing instructions) and can also direct CPUs to arbitrary reset vectors. 5 
 6 
The use of implementation-specific mechanisms is permitted by the ePAPR. CPUs with this capability 7 
are indicated by an implementation-specific value in the enable-method property of a CPU node. A 8 
client program can release these types of CPUs using implementation-specific means not specified by 9 
the ePAPR. 10 
 11 

5.5.4  Timebase Synchronization 12 
 13 
For configurations that use the spin table method of booting secondary cores (i.e.CPU’s enable-14 
method = “spin-table”), the boot program shall enable and synchronize the time base (TBU and TBL) 15 
across the boot and secondary CPUs. 16 
 17 
For configurations that use implementation specific methods (see section 5.5.3) to release secondary 18 
cores, the methods must provide some means of synchronizing the time base across CPUs.  The 19 
precise means to accomplish this, which steps are the responsibility of the boot program, and which 20 
are the responsibility of the client program is specified by the implementation specific method. 21 
 22 

5.6  Asymmetric Configuration Considerations 23 
 24 
For multiple CPUs in a partitioned or asymmetric (AMP) configuration, the ePAPR boot requirements 25 
apply independently to each domain or partition. For example, a four-CPU system could be 26 
partitioned into three domains: one SMP domain with two CPUs and two UP domains each with one 27 
CPU. Each domain could have distinct client image, device tree, boot cpu, etc. 28 

29 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 60 of 108 
 

6 Device Bindings 1 
 2 
This chapter contains requirements, known as bindings, for how specific types and classes of devices 3 
are represented in the device tree. The compatible property of a device node describes the specific 4 
binding (or bindings) to which the node complies.  5 
 6 
Bindings may be defined as extensions of other each. For example a new bus type could be defined as 7 
an extension of the simple-bus binding. In this case, the compatible property would contain several 8 
strings identifying each binding—from the most specific to the most general (see section 2.3.1, 9 
compatible). 10 

6.1 Binding Guidelines 11 

6.1.1 General Principles 12 
 13 
When creating a new device tree representation for a device, a binding should be created that fully 14 
describes the required properties and value of the device. This set of properties shall be sufficiently 15 
descriptive to provide device drivers with needed attributes of the device. 16 
 17 
Some recommended practices include: 18 
 19 

1. Define a compatible string using the conventions described in section 2.3.1. 20 
 21 
2. Use the standard properties (defined in sections 2.3 and 2.4) as applicable for the new device. 22 

This usage typically includes the reg and interrupts properties at a minimum. 23 
 24 

3. Use the conventions specified in section 6 (Device Bindings) if the new device fits into one 25 
the ePAPR defined device classes. 26 

 27 
4. Use the miscellaneous property conventions specified in section 6.1.2, if applicable.  28 

 29 
5. If new properties are needed by the binding, the recommended format for property names is: 30 

“<company>,<property-name>”, where <company> is an OUI or short unique string 31 
like a stock ticker that identifies the creator of the binding. 32 

Example: ibm,ppc-interrupt-server#s 33 
 34 

35 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 61 of 108 
 

6.1.2 Miscellaneous Properties 1 
 2 
This section defines a list of helpful properties that might be applicable to many types of devices and 3 
device classes. They are defined here to facilitate standardization of names and usage. 4 

6.1.2.1 clock-frequency 5 
 6 
Property: clock-frequency 7 
Value type: <prop-encoded-array> 8 
Description: 9 

Specifies the frequency of a clock in Hz. The value is a <prop-encoded-array> in one of two 10 
forms: 11 

1. a 32-bit integer consisting of one <u32> specifying the frequency 12 
2. a 64-bit integer represented as a <u64> specifying the frequency 13 

 14 

6.1.2.2 reg-shift 15 
 16 
Property: reg-shift 17 
Value type: <u32> 18 
Description: 19 

The reg-shift property provides a mechanism to represent devices that are identical in most 20 
respects except for the number of bytes between registers. The reg-shift property specifies in 21 
bytes how far the discrete device registers are separated from each other. The individual 22 
register location is calculated by using following formula: “registers address” << reg-shift. If 23 
unspecified, the default value is 0. 24 
 25 
For example, in a system where 16540 UART registers are located at addresses 0x0, 0x4, 0x8, 26 
0xC, 0x10, 0x14, 0x18, and 0x1C, a reg-shift = <2> property would be used to specify 27 
register locations. 28 

6.1.2.3 label 29 
 30 
    Property: label 31 
    Value type: <string> 32 
    Description: 33 

The label property defines a human readable string describing a device.   The binding for a 34 
given device specifies the exact meaning of the property for that device. 35 
 36 

37 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 62 of 108 
 

6.2 Serial devices 1 

6.2.1 Serial Class Binding 2 
 3 
The class of serial devices consists of various types of point to point serial line devices. Examples of 4 
serial line devices include the 8250 UART, 16550 UART, HDLC device, and BISYNC device. In 5 
most cases hardware compatible with the RS-232 standard fit into the serial device class. 6 
 7 
I2C and SPI (Serial Peripheral Interface) devices shall not be represented as serial port devices because 8 
they have their own specific representation. 9 

6.2.1.1 clock-frequency 10 
 11 
Property: clock-frequency 12 
Value type: <u32> 13 
Description: 14 

Specifies the frequency in Hertz of the baud rate generator’s input clock. 15 
Example: 16 

clock-frequency = <100000000>; 17 

6.2.1.2 current-speed 18 
 19 
Property: current-speed 20 
Value type: <u32> 21 
Description: 22 

Specifies the current speed of a serial device in bits per second. A boot program should set 23 
this property if it has initialized the serial device. 24 

Example: 25 
current-speed = <115200>; # 115200 baud 26 

 27 
28 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 63 of 108 
 

6.2.2 National Semiconductor 16450/16550 Compatible UART 1 
Requirements 2 

 3 
Serial devices compatible to the National Semiconductor 16450/16550 UART (Universal 4 
Asynchronous Receiver Transmitter) should be represented in the device tree using following 5 
properties.  6 
 7 
Properties 8 

Table 6-1 ns16550 properties 9 
Property Name Usage Value Type Definition 
compatible R <stringlist> Value shall include “ns16550”. 
clock-frequency R <u32> Specifies the frequency (in Hz) of the baud rate generator’s input clock 
current-speed OR <u32> Specifies current serial device speed in bits per second 
reg R <prop-encoded-

array> 
Specifies the physical address of the registers device within the address space 
of the parent bus 

interrupts OR <prop-encoded-
array> 

Specifies the interrupts generated by this device. The value of the interrupts 
property consists of one or more interrupt specifiers. The format of an 
interrupt specifier is defined by the binding document describing the node’s 
interrupt parent. 

reg-shift O <u32> Specifies in bytes how far the discrete device registers are separated from 
each other. The individual register location is calculated by using following 
formula: “registers address” << reg-shift.  
If unspecified, the default value is 0. 

virtual-reg SD <u32> or 
<u64> 

See section 2.3.7. Specifies an effective address that maps to the first physical 
address specified in the reg property.  This property is required if this device 
node is the system’s console. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 10 

6.3 Network devices 11 
 12 
Network devices are packet oriented communication devices. Devices in this class are assumed to 13 
implement the data link layer (layer 2) of the seven-layer OSI model and use Media Access Control 14 
(MAC) addresses. Examples of network devices include Ethernet, FDDI, 802.11, and Token-Ring. 15 

6.3.1 Network Class Binding 16 

6.3.1.1 address-bits 17 
 18 
Property: address-bits 19 
Value type: <u32> 20 
Description: 21 

Specifies number of address bits required to address the device described by this node. This 22 
property specifies number of bits in MAC address. If unspecified, the default value is 48. 23 

Example: 24 
address-bits = <48>; 25 

26 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 64 of 108 
 

6.3.1.2 local-mac-address 1 
 2 
Property: local-mac-address 3 
Value type: <prop-encoded-array> encoded as array of hex numbers 4 
Description: 5 

Specifies MAC address that was assigned to the network device described by the node 6 
containing this property. 7 

Example:  8 
local-mac-address = [ 00 00 12 34 56 78]; 9 

6.3.1.3 mac-address 10 
 11 
Property: mac-address 12 
Value type: <prop-encoded-array> encoded as array of hex numbers 13 
Description: 14 

Specifies the MAC address that was last used by the boot program. This property should be 15 
used in cases where the MAC address assigned to the device by the boot program is different 16 
from the local-mac-address property. This property shall be used only if the value differs 17 
from local-mac-address property value. 18 

Example: 19 
mac-address = [ 0x01 0x02 0x03 0x04 0x05 0x06 ]; 20 

6.3.1.4 max-frame-size 21 
 22 
Property: max-frame-size 23 
Value type: <u32> 24 
Description: 25 

Specifies maximum packet length in bytes that the physical interface can send and receive. 26 
Example: 27 

max-frame-size = <1518>; 28 

6.3.2 Ethernet specific considerations 29 
 30 
Network devices based on the IEEE 802.3 collections of LAN standards (collectively referred to as 31 
Ethernet) may be represented in the device tree using following properties, in addition to properties 32 
specified of the network device class. 33 
 34 
The properties listed in this section augment the properties listed in the network device class. 35 

36 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 65 of 108 
 

6.3.2.1 max-speed 1 
 2 
Property: max-speed 3 
Value type: <u32> 4 
Description: 5 

Specifies maximum speed (specified in megabits per second) supported the device. 6 
Example: 7 

max-speed = <1000>; 8 

6.3.2.2 phy-connection-type 9 
 10 
Property: phy-connection-type 11 
Value type: <string> 12 
Description:  13 

Specifies interface type between the Ethernet device and a physical layer (PHY) device. The 14 
value of this property is specific to the implementation. 15 
 16 
Recommended values are shown in the following table. 17 
 18 

Connection type Value 
Media Independent Interface “mii” 
Reduced Media Independent Interface “rmii” 
Gigabit Media Independent Interface “gmii” 
Reduced Gigabit Media Independent Interface “rgmii” 
rgmii with internal delay “rgmii-id” 
rgmii with internal delay on TX only “rgmii-txid” 
rgmii with internal delay on RX only “rgmii-rxid” 
Ten Bit Interface “tbi” 
Reduced Ten Bit Interface “rtbi” 
Serial Media Independent Interface “smii” 

 19 
Example: 20 

phy-connection-type = “mii”; 21 

6.3.2.3 phy-handle 22 
 23 
Property: phy-handle 24 
Value type: <phandle> 25 
Description: 26 

Specifies a reference to a node representing a physical layer (PHY) device connected to this 27 
Ethernet device. This property is required in case where the Ethernet device is connected a 28 
physical layer device. 29 

Example: 30 
phy-handle = <&PHY0>; 31 

http://en.wikipedia.org/wiki/Media_Independent_Interface�
http://en.wikipedia.org/wiki/Gigabit_Media_Independent_Interface�


Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 66 of 108 
 

6.4 open PIC Interrupt Controllers 1 
 2 
This section specifies the requirements for representing open PIC compatible interrupt controllers. An 3 
open PIC interrupt controller implements the open PIC architecture (developed jointly by AMD and 4 
Cyrix) and specified in The Open Programmable Interrupt Controller (PIC) Register Interface 5 
Specification Revision 1.2 [18]. 6 
 7 
Interrupt specifiers in an open PIC interrupt domain are encoded with two cells.  The first cell defines 8 
the interrupt number. The second cell defines the sense and level information. 9 
 10 
Sense and level information shall be encoded as follows in interrupt specifiers: 11 
    0 = low to high edge sensitive type enabled 12 
    1 = active low level sensitive type enabled 13 
    2 = active high level sensitive type enabled 14 
    3 = high to low edge sensitive type enabled 15 
 16 
Properties 17 

Table 6-2 Open-pic properties 18 
Property Name Usage Value 

Type 
Definition 

compatible R <string> Value shall include “open-pic”. 
reg R <prop-

encoded-
array> 

Specifies the physical address of the registers device within the address space 
of the parent bus 

interrupt-controller R <empty> Specifies that this node is an interrupt controller 
#interrupt-cells R  <u32> Shall be 2. 
#address-cells R  <u32> Shall be 0. 
Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

 19 

6.5 simple-bus 20 
 21 
System-on-a-chip processors may have an internal I/O bus that cannot be probed for devices. The 22 
devices on the bus can be accessed directly without additional configuration required. This type of bus 23 
is represented as a node with a compatible value of  “simple-bus”.  24 
 25 
Properties 26 

Table 6-3 Simple-bus properties 27 
Property Name Usage Value 

Type 
Definition 

compatible R <string> Value shall include simple-bus. 
ranges R <prop-

encoded-
array> 

This property represents the mapping between parent address to child address 
spaces (see section 2.3.8, ranges). 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
Note: All other standard properties (section 2.3) are allowed but are optional. 

  28 
29 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 67 of 108 
 

7 Virtualization 1 

7.1 Overview 2 
 3 
The power.org Embedded Power Architecture Platform Requirements (ePAPR) defines virtualization 4 
standards including: 5 

• Hypercall ABI 6 
• Hypercall services 7 
• Virtualization extensions to the device tree, so that guest operating systems are aware of the 8 

resources and services offered by a hypervisor 9 
 10 

7.2 Hypercall Application Binary Interface (ABI) 11 
 12 
An explicit invocation of the hypervisor by a guest is called a hypercall or hcall. This is performed by 13 
executing an instruction that causes an exception, in much the same way as a Unix system call is 14 
performed. One argument is a token that designates the actual function to perform. The remaining 15 
arguments and their interpretation are specific to the function of the hcall. 16 
The hcall function depends on a modified system call (LEVEL=1) instruction which traps directly to 17 
hypervisor mode in the processor.  18 
Summary 19 

• The hypercall number shall be contained in r11.  20 
• Input parameters shall be contained in r3 through r10, inclusive.  21 
• Hypercalls shall return a success code and place this value in r3.  22 
• Further output parameters shall be contained in r4 through r11, inclusive.  23 
• If more data must be transferred in either direction in a single hypercall, that data must be 24 

placed into memory, and that must be specified by the hypercall API (the ABI does not define 25 
this behavior). 26 

  27 
Table 7-1. Register Volatility 28 

Register Description 
r0 Volatile 
r1–r2 Nonvolatile 
r3 Volatile parameter and return value for status 
r4–r10 Volatile input and output value 
r11 Volatile hypercall Token and output value 
r12 Volatile 
r13–r31 Nonvolatile 
LR Nonvolatile 
CTR Volatile 
XER Volatile 
CR2–CR4 Nonvolatile 
Remaining CR fields  Volatile  
Other Registers  Nonvolatile  

 29 
Contents of registers that are considered "nonvolatile" shall be preserved across hypercalls. 30 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 68 of 108 
 

 1 

7.3 ePAPR Hypercall Token Definition 2 
The ePAPR hcall ABI specifies that an hcall token identifying the hcall be placed in r11.   An hcall 3 
token is 32-bits and is defined as follows: 4 
 5 

 6 
Bit 0 (msb) is reserved and must be zero. 7 
The vendor ID encoding is a 15-bit value defined as specified in Table 7-2: 8 
 9 

Table 7-2, Vendor ID encoding 10 
Vendor ID Vendor Name 

0 reserved for private, local use 

1 ePAPR (hcall is defined by the ePAPR) 

2 Freescale Semiconductor 

3 International Business Machines 

4 Green Hills Software 

5 Enea 

6 Wind River Systems 

7 Applied Micro Circuits 

42 KVM (Kernel-based Virtual Machine) 

 11 
The ePAPR hcall tokens values are encoded as specified in Table 7-3. ePAPR Hypercall Token 12 
Definition. 13 
 14 

Table 7-3. ePAPR Hypercall Token Definition 15 
Hypercall Token Symbolic Name Value 

EV_BYTE_CHANNEL_SEND 1 

EV_BYTE_CHANNEL_RECEIVE 2 

EV_BYTE_CHANNEL_POLL 3 

EV_INT_SET_CONFIG 4 

EV_INT_GET_CONFIG 5 

EV_INT_SET_MASK 6 

EV_INT_GET_MASK 7 

EV_INT_IACK 9 

EV_INT_EOI 10 

0 
 

  
 
 

 
 

Vendor ID 
 

1 
 

 

15 
 

 Hcall token 
 

32 
 

 

16 
 

 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 69 of 108 
 

Hypercall Token Symbolic Name Value 

EV_INT_SEND_IPI 11 

EV_INT_SET_TASK_PRIORITY 12 

EV_INT_GET_TASK_PRIORITY 13 

EV_DOORBELL_SEND 14 

EV_MSGSND 15 

EV_IDLE 16 

7.4 Hypercall Return Codes 1 
Hypercalls return a status value in r3 encoded as follows: 2 
 3 

 4 
Vendor specific errors are encoded by setting the vendor ID (see table 1-1).   5 
Local/private errors that are not vendor specific can be encoded by setting the L bit. 6 
The following tables defines the return codes that may be returned from hypercalls. A return code of 7 
zero indicates that the hypercall succeeded.  8 
 9 

Table 7-4. ePAPR hcall return codes 10 
Symbolic Name Value Meaning 

 0 Success-- the operation completed successfully 

EV_EPERM 1 Operation not permitted 

EV_ENOENT 2 Entry Not Found 

EV_EIO 3 I/O error occurred 

EV_EAGAIN 4 The operation had insufficient resources to complete and 
should be retried 

EV_ENOMEM 5 There was insufficient memory to complete the operation 

EV_EFAULT 6 Bad guest address 

EV_ENODEV 7 No such device 

EV_EINVAL 8 An argument supplied to the hcall was out of range or 
invalid 

EV_INTERNAL 9 An internal error occured 

EV_CONFIG 10 A configuration error was detected 

EV_INVALID_STATE 11 The object is in an invalid state 

EV_UNIMPLEMENTED 12 Unimplemented hypercall 

EV_BUFFER_OVERFLOW 13 Caller-supplied buffer too small 

0 
 

  
 
 

 
 

Vendor ID 
 

1 
 

 

15 
 

 status/error-num 
 

32 
 

 

16 
 

 L 
 

 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 70 of 108 
 

 1 

7.5 Hypervisor Node 2 
Guest operating system can determine the virtualization resources available to them by looking at the 3 
/hypervisor node that will be present in the device tree passed to the guest operating system. 4 
 5 
The name of the hypervisor node shall be “hypervisor” and it must be located at the root of the guest 6 
device tree. 7 
 8 
The hypervisor node support the following properties: 9 
 10 

Table 7-5. ePAPR hypervisor node 11 
Property Name Usage Value Type Definition 

compatible R <string> Must contain "epapr,hypervisor-<version#>" 
 
Where version# indicates the version of the ePAPR virtualization extensions that 
the hypervisor is compatible with. 
 

hcall-instructions R <prop-encoded-
array> 

Consists of up to 4 cells that specify a sequence of Power ISA instructions used in 
making a hypercall.   Each cell contains a Power ISA opcode. 
 
Example: 

hcall-instructions = <0x44000022>;   // sc level=1 
 

guest-id R <u32> A hypervisor provided guest identification number that is guaranteed to be unique 
across all partitions. 

guest-name R <string> A human readable string that describes the guest 
has-idle SD <none> If present, the hypervisor supports the EV_IDLE hcall 

has-msgsnd-hcall SD <none> If present, the hypervisor supports the EV_MSGSND hcall 
Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 

12 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 71 of 108 
 

 9 

7.6 ePAPR Virtual Interrupt Controller Services 10 
In a virtualized implementation of the Power Architecture, interrupt controller services may be 11 
provided by a virtual interrupt controller accessed via a hypercall interface.  The ePAPR virtual 12 
interrupt controller provides interrupt controller  services for external interrupts. 13 
 14 
External interrupts received by a partition can come from two sources: 15 

• Hardware interrupts - hardware interrupts come from external interrupt lines or on-chip I/O 16 
devices 17 

• Virtual interrupts - virtual interrupts are generated by the hypervisor as part of some 18 
hypervisor service or hypervisor-created virtual device. 19 

 20 
Both types of interrupts are processed using the same programming model and same set of hcalls. 21 
Each interrupt source in a partition has a partition-wide unique interrupt source number.  Interrupt 22 
number 0 is reserved, and indicates a spurious interrupt (see the EV_INT_IACK hcall). 23 

 24 
Table 7-6. interrupt controller hcalls 25 

Hypercall Description 

EV_INT_SET_CONFIG Configures an interrupt 

EV_INT_GET_CONFIG Returns the configuration of an interrupt 

EV_INT_SET_MASK Sets the mask for an interrupt 

EV_INT_GET_MASK Returns the mask for an interrupt 

EV_INT_IACK Acknowledges an interrupt 

EV_INT_EOI Signals the end of processing for an interrupt 

EV_INT_SEND_IPI Sends an interprocessor interrupt to other CPUs/threads 

EV_INT_SET_TASK_PRIORITY Sets the current task priority for the specified interrupt controller 

EV_INT_GET_TASK_PRIORITY Gets the current task priority for the specified interrupt controller 

7.6.1 Virtual Interrupt Controller Device Tree Representation 26 

7.6.1.1 Inter rupt Controller  Node 27 
The ePAPR virtual interrupt controller is represented as a node in guest device trees with the 28 
properties as described in Table 7-11: 29 

 30 
Table 7-7. ePAPR virtual interrupt controller 31 

Property Name Usage Value Type Definition 
compatible R <string> Must contain "epapr,hv-pic”. 
hv-handle O <u32> Specifies a handle to the interrupt controller.  This handle may be 

used in hcalls that require an interrupt controller handle. 
#interrupt-cells R <u32> Must be 2 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 72 of 108 
 

#address-cells R <u32> Must be 0 
interrupt-controller R <none> Property must be present to indicate that this node is an interrupt 

controller 
priority-count R <u32> Defines the number of priorities supported by the virtual interrupt 

controller.  The lowest priority (least-favored) is 0. 
has-task-priority SD <none> If present indicates that the virtual interrupt controller supports 

setting the current task priority.  See the 
EV_SET_TASK_PRIORITY hcall. 

has-external-
proxy 

SD <none> If present, indicates that the hardware platform and virtual interrupt 
controller support the external proxy feature of the Power 
architecture. 

no-priority SD <none> If present indicates that the virtual interrupt controller does not 
implement the interrupt priority mechanism. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 
 1 

7.6.1.2 Inter rupt Specifiers 2 
The interrupts property of interrupt children of the "epapr,hv-pic" node consists of two cells encoded 3 
as follows: 4 

<interrupt-src-number   flags> 5 
Where: 6 

• interrupt-src-number specifies the interrupt source number that may be used in the 7 
hcalls to configure and manage the interrupt source 8 

• flags describes the level-sense encoding of the interrupt, encoded as: 9 
 10 

Table 7-8, epapr,hv-pic interrupt specifier flags encoding 11 
Bits Description 
31 

Polarity 

0   Polarity is active-low or negative edge triggered. 

1   Polarity is active-high or positive edge-triggered. 
30 

Sense 

0   The interrupt is edge sensitive 

1   The interrupt is level sensitive 
12 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 73 of 108 
 

7.6.1.3 IPI Representation 1 
Interrupt specifiers for IPI interrupt send via the EV_INT_SEND_IPI hcall are represented in a node 2 
in a guest device tree as specified in Table 7-13. ePAPR IPI node properties. 3 

 4 
Table 7-9. ePAPR IPI node properties 5 

Property Name Usage Value Type Definition 
compatible R <string> Must contain “epapr,hv-pic-ipi". 
interrupts R <prop-

encoded-
array> 

An array of interrupt specifiers each corresponding to the IPI 
channels supported by the EV_INT_SEND_IPI hcall.  The interrupt 
specifiers are encoded as: 

<channel-0 channel-1 ... channel-n> 
 

The number of interrupt specifiers implies the number of IPI 
channels supported by an implementation. 

interrupt-parent O <phandle> Points to the interrupt parent.  The interrupt specifiers of this node 
must be in the interrupt domain whose root is the corresponding 
"epapr,hv-pic" interrupt controller node. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 

 6 

7.6.2 ePAPR Interrupt Controller Hypercalls 7 

7.6.2.1 EV_INT_SET_CONFIG 8 
Hypercall: EV_INT_SET_CONFIG 9 
 10 
Description: Configures the priority, destination CPU, and level/sense for an interrupt source 11 

Arguments: 12 
 13 

r11 hcall-token EV_INT_SET_CONFIG 
r3 interrupt Interrupt source number (from the interrupt specifier)  
r4  config Specifies the configuration of the interrupt source. The config value is encoded as 

described in Table 7-12, epapr,hv-pic interrupt specifier flags encoding. 
r5 priority Priority. Specifies the interrupt priority.  The allowable range of priorities (lowest to 

highest) is described by the "priority-count" property on the "epapr,hv-pic" node. 
 
A priority value of 0 inhibits signaling of this interrupt. 

r6 destination Destination CPU. A number that identifies which CPU/thread receives the interrupt.  
This  value matches the device tree "reg" property corresponding to the CPU/thread. 

Return values: 14 
r3 Status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL : a parameter was out of range or invalid 

15 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 74 of 108 
 

7.6.2.2 EV_INT_GET_CONFIG 1 

Hypercall: EV_INT_GET_CONFIG 2 

Descr iption: Returns the configuration of the specified interrupt 3 

Arguments: 4 
r11 hcall-token EV_INT_GET_CONFIG 
r3 Interrupt Interrupt source number (from the interrupt specifier) 

Return values: 5 
r3 Status Status of the hypercall 

0: the operation completed successfully 
EV_EINVAL : the interrupt number was invalid 

r4 config Interrupt configuration. See Table 7-12, epapr,hv-pic interrupt specifier 
flags encoding for a description of the bit encoding of this value. 

r5 priority Priority. Specifies the interrupt priority.  The allowable range of priorities 
(lowest to highest) is described by the "priority-count" property on the 
"epapr,hv-pic" node. 
 
A priority value of 0 inhibits signaling of this interrupt. 

r6 destination  Destination CPU. A number that identifies which CPU/thread receives 
the interrupt.  This  value matches the device tree "reg" property 
corresponding to the CPU/thread. 

 6 

7.6.2.3 EV_INT_SET_MASK 7 
Hypercall: EV_INT_SET_MASK 8 
 9 
Description: Sets the mask for the specified interrupt source 10 

Arguments: 11 
r11 hcall-token EV_INT_SET_MASK 
r3 interrupt Interrupt source number (from the interrupt specifier) 
r4 mask  Specifies whether the interrupt source is masked 

Zero: This interrupt source is enabled 
nonzero: This interrupt source is disabled 

Return values: 12 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL : the interrupt number was invalid 

13 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 75 of 108 
 

7.6.2.4 EV_INT_GET_MASK 1 

Hypercall: EV_INT_GET_MASK 2 

Descr iption: Returns the mask for the specified interrupt source 3 

Arguments: 4 
r11 hcall-token EV_INT_GET_MASK 
r3 interrupt Interrupt source number (from the interrupt specifier) 

Return values:  5 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL : the interrupt number was invalid 

r4 mask  Specifies whether the interrupt source is masked 
Zero: This interrupt source is enabled 
nonzero: This interrupt source is disabled 

 6 

7.6.2.5 EV_INT_IACK 7 

Hypercall: EV_INT_IACK 8 
Description: Acknowledges an interrupt. EV_INT_IACK returns the interrupt source number 9 
corresponding to the highest priority pending interrupt. EV_INT_IACK also has the side effect of 10 
negating the corresponding int output signal from the interrupt controller.  11 

Arguments: 12 
r11 hcall-token EV_INT_IACK 
r3 handle If zero, returns the next interrupt source number to be handled 

irrespective of the hieararchy or cascading of interrupt controlllers.   
 
If, non-zero, specifies a handle to the interrupt controller that is the target 
of the acknowlege.  The typical use for a non-zero handle value would be 
for processing interrupts with a cascaded interrupt controller, where the 
external proxy mechanism returned the root level interrupt source 
number and the guest operating system manages the cascaded 
controller. 

Return values: 13 
r3 status Status of the hypercall 

0 success  
EV_INVALID_STATE— the virtual interrupt controller supports external 
proxy mode and the invocation of FH_VMPIC_IACK call is not supported 

r4 int-src-num The interrupt source number corresponding to the highest priority pending 
interrupt.  Invoking EV_INT_IACK when no interrupt is pending returns 
spurious interrupt source number 0. 

 14 
15 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 76 of 108 
 

7.6.2.6 EV_INT_EOI 1 

Hypercall: EV_INT_EOI 2 
 3 
Description: Signals the end of processing for the specified interrupt, which must be the highest 4 
priority interrupt currently in service. 5 
 6 
An "in service" interrupt is one that has been acknowleged-- either explicitly via EV_INT_IACK or 7 
by hardware that supports Power Architecture Category: External Proxy. 8 

Arguments: 9 
r11 hcall-token FH_VMPIC_ EOI 
r3 interrupt 

 
Interrupt source number (from the interrupt specifier) 

Return values:  10 
r3 status Status of the hypercall 

0 the operation completed successfully 
EV_INTERNAL—an error occurred 

Note: It is the responsibility of guest software to ensure that the interrupt source specified in this hcall 11 
is the highest priority interrupt in service. 12 

13 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 77 of 108 
 

7.6.2.7 EV_INT_SEND_IPI 1 

Hypercall: EV_INT_SEND_IPI 2 
 3 
Description: An intra-partition interrupt mechansim that causes an external interrupt at the 4 
destination virtual CPU(s). 5 

Arguments: 6 
r11 hcall-token EV_INT_SEND_IPI 
r3 ipi channel 

 
A number that specifies which IPI channel to use.  See the "epapr,hv-
pic-ipi" node for information on the number of available channels. 

r4 destination Destination CPU. A number that identifies which CPU/thread receives 
the interrupt.  This  value matches the device tree "reg" property 
corresponding to the CPU/thread. 
 
A value of 0xffffffff means that an interrupt should be broadcast to all 
CPUs/threads. 

Return values:  7 
r3 status Status of the hypercall 

0 the operation completed successfully 
EV_INTERNAL—an error occurred 

 8 
Programming Note 
 
ePAPR interrupt controller hypercalls are guaranteed to be atomic and to be performed in program 
order with respect to all processors. For storage access ordering, ePAPR interrupt controller hypercalls 
are treated as data accesses with respect to memory barriers. 
 
ePAPR interrupt controller hypercalls can be ordered with respect to storage accesses by the "sync" 
and "mbar 0" instructions. 
 9 

10 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 78 of 108 
 

7.6.2.8 EV_INT_SET_TASK_PRIORITY 1 

Hypercall: EV_INT_SET_TASK_PRIORITY 2 
 3 
Description: Sets the current task priority for the specified interrupt controller.   The current task 4 
priority is a per-virtual- cpu and per-interrupt controller attribute.  Setting the task priority indicates 5 
the relative importance of the task running on the specified cpu. 6 
 7 
The default task priority is set to the maximum priority (as specified by the "priority-count" property 8 
on the interrupt controller node).  This means that the EV_INT_SET_TASK_PRIORITY hcall must 9 
be called for each cpu to enable interrupts. 10 
 11 
The default task priority is 0. 12 

Arguments: 13 
r11 hcall-token EV_INT_SET_TASK_PRIORITY 
r3 handle 

 
Handle to the interrupt controller for which the priority is to be configured. 

r4 task priority Indicates the threshold that individual interrupt priorities must exceed for 
the interrupt to be serviced. 
 
Valid values range from 0 to the value described by the described by the 
priority-count property on the "epapr,hv-pic" node. 
 
A priority value of 0 means that all interrupts except those whose priority 
is 0 can be serviced. 
 
The priority-count property specifies the number of priorities supported 
by an interrupt controller.  A priority value equal to (priority-count - 1) 
means that no interrupts are signaled to the specified CPU. 

Return values:  14 
r3 status Status of the hypercall 

0 the operation completed successfully 
EV_INTERNAL—an error occurred 

 15 
16 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 79 of 108 
 

7.6.2.9 EV_INT_GET_TASK_PRIORITY 1 

Hypercall: EV_INT_GET_TASK_PRIORITY 2 
 3 
Description: Gets the current task priority for the specified interrupt controller. 4 

Arguments: 5 
r11 hcall-token EV_INT_SET_TASK_PRIORITY 
r3 handle 

 
Handle to the interrupt controller for which the priority is being queried. 

   

Return values:  6 
r3 status Status of the hypercall 

0 the operation completed successfully 
EV_INTERNAL—an error occurred 

r4 task priority Indicates the threshold that individual interrupt priorities must exceed for 
the interrupt to be serviced. 
 

 7 
8 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 80 of 108 
 

7.7 Byte-channel Services 1 

7.7.1 Overview 2 

A byte-channel is a hypercall-based, interrupt-driven character-based I/O channel (similar to a UART).    3 
Hypercalls are available to send, receive, and poll a channel. 4 

 5 
Table 7-10. hcalls for Byte-Channel Services 6 

Hypercall Description 

EV_BYTE_CHANNEL_SEND Sends data to a byte-channel. 

EV_BYTE_CHANNEL_RECEIVE Receives bytes of data from a byte-channel. 

EV_BYTE_CHANNEL_POLL Returns the status of the byte-channel send and receive buffers 

 7 
8 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 81 of 108 
 

7.7.2 Interrupts and Guest Device Tree Representation 1 

Byte-channels are specified in the guest device tree as follows: 2 
Table 7-11. Guest Device Tree 3 

Property Name Usage Value Type Definition 
compatible R <stringlist> Must be “epapr,hv-byte-channel” 
hv-handle R <u32> Specifies the handle to the byte-channel. This value must 

be used by guest software for all byte-channel related 
hypercalls. 

interrupts R <prop-
encoded-array 

Must consist of one or two interrupt specifiers encoded as 
follows: 
 

<rx-interrupt-specifier  [ tx-interrupt-specifier]> 
 
If only one interrupt specifier is present, then the 
implementation does not support TX interrupts. 
 
The virtual device shall generate a receive interrupt (RX) 
after an increase in the number of bytes available in the 
byte-channel's receive buffer. 
 
If implemented, the virtual device shall generate a transmit 
interrupt (TX) after an increase in the space available in the 
byte-channel's transmit buffer. 
 
Both TX and RX interrupts shall be edge-triggered. 
 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 

 4 
5 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 82 of 108 
 

7.7.3 Byte-channel Hypercalls 1 

The byte-channel hypercalls are nonblocking and synchronous. All hypercalls perform the requested 2 
task and return. There are no asynchronous side effects. If the request could not be completed (e.g. no 3 
space, no data) the return code of the hypercall indicates the reason the call did not complete. 4 

7.7.3.1 EV_BYTE_CHANNEL_SEND 5 
Hypercall: EV_BYTE_CHANNEL_SEND 6 
 7 
Description: Description: Sends data to a byte-channel. The maximum number of bytes that can be 8 
sent is 16. 9 

Arguments: 10 
r11 hcall-token EV_BYTE_CHANNEL_SEND 
r3 handle Byte-channel handle 
r4 count has count of bytes available in r5, r6, r7, and r8 

r5,r6,r7,r8 byte string The byte string starts in register r5 and proceeds toward the low 
order byte in register r8 for the number of characters specified in 
r4. The contents of all other byte locations of registers r5-r8 are 
undefined.  Each register holds at most 4 bytes, which means on 
64-bit CPUs only the low order 4 bytes of the registers are 
defined. 

Return values:  11 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL: Invalid parameter  
EV_EAGAIN: The byte-channel buffer did not have sufficient space and 
no characters were sent. The operation should be retried at a later time. 

r4 count Count of characters sent. 

7.7.3.2 EV_BYTE_CHANNEL_RECEIVE 12 
Hypercall: EV_BYTE_CHANNEL_RECEIVE 13 
 14 
Description: Receives bytes of data from a byte-channel. The maximum number of bytes received is 15 
16. 16 

Arguments: 17 
r11 hcall-token EV_BYTE_CHANNEL_RECEIVE 
r3 handle Byte-channel handle 
r4 max 

receive 
byte count 

Specifies the maximum number of characters to receive.  This value can 
be no larger than 16. 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 83 of 108 
 

Return values:  1 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL : a parameter was invalid 

r4 count Count of characters available in r5, r6, r7 and r8 
A count of zero indicates no characters are available. 

r5,r6,r7,r8 character 
string 

The byte string starts in register r5 and proceeds toward the low 
order byte in register r8 for the number of characters specified in 
r4. The contents of all other byte locations of registers r5-r8 are 
undefined.  Each register holds at most 4 bytes, which means 
on 64-bit CPUs only the low order 4 bytes of the registers are 
defined. 

 2 

7.7.3.3 EV_BYTE_CHANNEL_POLL 3 
Hypercall: EV_BYTE_CHANNEL_POLL 4 
 5 
Description: returns the status of the byte-channel send and receive buffers 6 

Arguments: 7 
r11 hcall-token EV_BYTE_CHANNEL_POLL 
r3 handle Byte-channel handle 

Return values: 8 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL : handle was invalid 

r4 rx count Count of bytes available in the byte-channel’s receive buffer. 
r5 tx count Count of space available in the byte-channel’s transmit buffer. 

 9 
10 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 84 of 108 
 

7.8 Inter-partition Doorbells 1 

7.8.1 Overview 2 
A doorbell is an inter-partition signaling mechanism.  A doorbell allows one partition to cause an 3 
interrupt in one (or possibly more) target partitions.  The doorbell results in an external interrupt in the 4 
destination partition (i.e. the interrupt is gated by MSR[EE] and the exception handler specified in 5 
IVOR4 executes). 6 
 7 
Note, doorbell interrupts may be coalesced-- if multiple senders issue a doorbell to the same receive 8 
endpoint, the receiver may see only one interrupt. If a sender issues multiple doorbells to a receiver 9 
that has interrupts disabled the receiver may only see one interrupt. 10 
A partition is aware of the doorbells available to it through its guest device tree which contains a node 11 
for each doorbell endpoint. 12 

7.8.2 Doorbell Send Endpoints 13 
Doorbell send endpoints are represented in a guest device tree with the following properties: 14 

Table 7-12. Doorbell Send Endpoints 15 
Property Name Usage Value Type Definition 

compatible R <stringlist> Must include “epapr,hv-doorbell-send-handle” 
hv-handle R <u32> Specifies the handle to the doorbell. This value must 

be used by guest software for doorbell related 
hypercalls. 

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 

7.8.3 Doorbell Receive Endpoints 16 
Doorbell receive endpoints are represented in a guest device tree with the following properties: 17 
 18 

Table 7-13. Doorbell Receive Endpoints 19 
Property Name Usage Value Type Definition 

compatible R <stringlist> Must be “epapr,hv-doorbell-receive-handle” 
interrupts R <prop-

encoded-array 
Must consist of one interrupt specifier.  

Usage legend: R=Required, O=Optional, OR=Optional but Recommended, SD=See Definition 

 20 
21 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 85 of 108 
 

 1 

7.8.4 Doorbell Hypercall 2 
Hypercall: EV_DOORBELL_SEND 3 
 4 
Description: Sends a doorbell signal to a partition. This causes an external interrupt in the destination 5 
partition. 6 

Arguments: 7 
r11 hcall-token EV_DOORBELL_SEND 
r3 handle  Specifies the doorbell handle of the partition to signal. This handle comes 

from the device tree. 

Return values:  8 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_EINVAL : handle was invalid 
EV_CONFIG: there was a configuration error with the doorbell 

7.9 msgsnd 9 

7.9.1 EV_MSGSND 10 
Hypercall: EV_MSGSND 11 
 12 
Description: Causes a "Processor Doorbell Exception" at the destination CPU(s). 13 
When a thread takes a Processor Doorbell Interrupt, the pending Processor Doorbell Exception is 14 
cleared, regardless of how many messages caused the Processor Doorbell Exception.   15 
A message sent by the msgsnd hypercall is ordered according to the requirements that would be 16 
imposed by the architecture if the message were sent using the "msgsnd" instruction instead. 17 
Specifically, the sending of the message is treated as a store with respect to memory barriers. 18 
 19 
Arguments: 20 

r11 hcall-token EV_MSGSND 
r3 pir 

 
Specifies the PIR of the destination CPU 

r4 broadcast A value of 0 specifies that the doorbell is not to be broadcast.  A value 
of 1 specifies that the doorbell is to be broadcast to all cpus/threads in 
the partition regardless of the value of the PIR register and the value of 
the PIR argument. 
 

 21 
Return values:  22 

r3 status Status of the hypercall 
0 : the operation completed successfully 
 

 23 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 86 of 108 
 

7.10 Idle 1 

EV_IDLE 2 
Hypercall: EV_IDLE 3 
 4 
Description: The EV_IDLE hcall provides a mechanism for a guest operating system to tell the 5 
hypervisor that it is idle.   It is recommended that this mechanism be used by guests instead of the 6 
'wait' instruction. 7 

Arguments: 8 
r11 hcall-token EV_IDLE 

Return values:  9 
r3 status Status of the hypercall 

0 : the operation completed successfully 
EV_UNIMPLEMENTED : the hypervisor does not implement the EV_IDLE 
hcall 

 10 
 11 

12 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 87 of 108 
 

8 Flat Device Tree Physical Structure 1 
 2 
An ePAPR boot program communicates the entire device tree to the client program as a single, linear, 3 
pointerless data structure known as the flattened device tree or device tree blob. 4 
 5 
This data structure consists of a small header (see 8.2), followed by three variable sized sections: the 6 
memory reservation block (see 8.3), the structure block (see 8.4) and the strings block (see 8.5). These 7 
should be present in the flattened device tree in that order. 8 
 9 
Thus, the device tree structure as a whole, when loaded into memory at address, will resemble the 10 
diagram in Figure 8-1 (lower addresses are at the top of the diagram). 11 
 12 

Figure 8-1 Device Tree Structure 13 

 14 
 15 
The (free space) sections may not be present, though in some cases they might be required to satisfy 16 
the alignment constraints of the individual blocks (see 8.6). 17 

8.1 Versioning 18 
 19 
Several versions of the flattened device tree structure have been defined since the original definition of 20 
the format. Fields in the header give the version, so that the client program can determine if 21 
the device tree is encoded in a compatible format. 22 
 23 
This document describes only version 17 of the format. ePAPR-compliant boot programs shall 24 
provide a device tree of version 17 or later, and should provide a device tree of a version that is 25 
backwards compatible with version 16. ePAPR-compliant client programs shall accept device trees of 26 
any version backwards compatible with version 17 and may accept other versions as well. 27 

address struct fdt_header 

(free space) 

memory reservation block 

(free space) 

structure block 

(free space) 

strings block 

(free space) 
address + totalsize 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 88 of 108 
 

 1 
Note: The version is with respect to the binary structure of the device tree, not its content. 2 
 3 

8.2 Header 4 
 5 
The layout of the header for the device tree is defined by the following C structure. All the header 6 
fields are 32-bit integers, stored in big-endian format. 7 
 8 

struct fdt_header { 9 
 uint32_t magic; 10 
 uint32_t totalsize; 11 
 uint32_t off_dt_struct; 12 
 uint32_t off_dt_strings; 13 
 uint32_t off_mem_rsvmap; 14 
 uint32_t version; 15 
 uint32_t last_comp_version; 16 
 uint32_t boot_cpuid_phys; 17 

uint32_t size_dt_strings; 18 
 uint32_t size_dt_struct; 19 
}; 20 

 21 
• magic 22 

 23 
This field shall contain the value 0xd00dfeed (big-endian). 24 

 25 
• totalsize 26 

 27 
This field shall contain the total size of the device tree data structure. This size shall 28 
encompass all sections of the structure: the header, the memory reservation block, structure 29 
block and strings block, as well as any free space gaps between the blocks or after the final 30 
block. 31 

 32 
• off_dt_struct 33 

 34 
This field shall contain the offset in bytes of the structure block (see 8.4) from the beginning 35 
of the header. 36 

 37 
• off_dt_strings 38 

 39 
This field shall contain the offset in bytes of the strings block (see 8.5) from the beginning of 40 
the header. 41 

 42 
• off_mem_rsvmap 43 

 44 
This field shall contain the offset in bytes of the memory reservation block (see 8.3) from the 45 
beginning of the header. 46 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 89 of 108 
 

 1 
• version 2 

 3 
This field shall contain the version of the device tree data structure. The version is 17 if using 4 
the structure as defined in this document. An ePAPR boot program may provide the device 5 
tree of a later version, in which case this field shall contain the version number defined in 6 
whichever later document gives the details of that version. 7 

 8 
• last_comp_version 9 

 10 
This field shall contain the lowest version of the device tree data structure with which the 11 
version used is backwards compatible. So, for the structure as defined in this document 12 
(version 17), this field shall contain 16 because version 17 is backwards compatible with 13 
version 16, but not earlier versions. As per 8.1, an ePAPR boot program should provide a 14 
device tree in a format which is backwards compatible with version 16, and thus this field 15 
shall always contain 16. 16 

 17 
• boot_cpuid_phys 18 

 19 
This field shall contain the physical ID of the system’s boot CPU. It shall be identical to the 20 
physical ID given in the reg property of that CPU node within the device tree. 21 

 22 
• size_dt_strings 23 

 24 
This field shall contain the length in bytes of the strings block section of the device tree blob. 25 

 26 
• size_dt_struct 27 

 28 
This field shall contain the length in bytes of the structure block section of the device tree 29 
blob. 30 

 31 

8.3 Memory Reservation Block 32 

8.3.1 Purpose 33 
 34 
The memory reservation block provides the client program with a list of areas in physical memory 35 
which are reserved; that is, which shall not be used for general memory allocations. It is used to 36 
protect vital data structures from being overwritten by the client program. For example, on some 37 
systems with an IOMMU, the TCE (translation control entry) tables initialized by an ePAPR boot 38 
program would need to be protected in this manner. Likewise, any boot program code or data used 39 
during the client program’s runtime would need to be reserved (e.g., RTAS on Open Firmware 40 
platforms). The ePAPR does not require the boot program to provide any such runtime components, 41 
but it does not prohibit implementations from doing so as an extension. 42 
 43 
More specifically, a client program shall not access memory in a reserved region unless other 44 
information provided by the boot program explicitly indicates that it shall do so. The client program 45 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 90 of 108 
 

may then access the indicated section of the reserved memory in the indicated manner. Methods by 1 
which the boot program can indicate to the client program specific uses for reserved memory may 2 
appear in this document, in optional extensions to it, or in platform-specific documentation. 3 
 4 
The reserved regions supplied by a boot program may, but are not required to, encompass the device 5 
tree blob itself. The client program shall ensure that it does not overwrite this data structure before it is 6 
used, whether or not it is in the reserved areas. 7 
 8 
Any memory that is declared in a memory node and is accessed by the boot program or caused to be 9 
accessed by the boot program after client entry must be reserved.  Examples of this type of access 10 
include (e.g., speculative memory reads through a non-guarded virtual page). 11 
 12 
Programming Note 
 
This requirement is necessary because any memory that is not reserved may be accessed by the client 
program with arbitrary storage attributes. 
 
 13 
Any accesses to reserved memory by or caused by the boot program must be done as not Caching 14 
Inhibited and Memory Coherence Required (i.e., WIMG = 0bx01x), and additionally for Book III-S 15 
implementations as not Write Through Required (i.e., WIMG = 0b001x). Further, if the VLE storage 16 
attribute is supported, all accesses to reserved memory must be done as VLE=0. 17 
 18 
Programming Note 
 
This requirement is necessary because the client program is permitted to map memory with storage 
attributes specified as not Write Through Required, not Caching Inhibited, and Memory Coherence 
Required (i.e., WIMG = 0b001x), and VLE=0 where supported. The client program may use large 
virtual pages that contain reserved memory. However, the client program may not modify reserved 
memory, so the boot program may perform accesses to reserved memory as Write Through Required 
where conflicting values for this storage attribute are architecturally permissible. 
 
 19 

8.3.2 Format 20 
 21 
The memory reservation block consists of a list of pairs of 64-bit big-endian integers, each pair being 22 
represented by the following C structure. 23 
 24 

struct fdt_reserve_entry { 25 
 uint64_t address; 26 
 uint64_t size; 27 
}; 28 

 29 
Each pair gives the physical address and size of a reserved memory region. These given regions shall 30 
not overlap each other. The list of reserved blocks shall be terminated with an entry where both 31 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 91 of 108 
 

address and size are equal to 0. Note that the address and size values are always 64-bit. On 32-bit 1 
CPUs the upper 32-bits of the value are ignored. 2 
 3 
Each uint64_t in the memory reservation block, and thus the memory reservation block as a whole, 4 
shall be located at an 8-byte aligned offset from the beginning of the device tree blob (see 8.6) 5 

8.4 Structure Block 6 
 7 
The structure block describes the structure and contents of the device tree itself. It is composed of a 8 
sequence of tokens with data, as described in 0. These are organized into a linear tree 9 
structure, as described in 0. 10 
 11 
Each token in the structure block, and thus the structure block itself, shall be located at a 4-byte 12 
aligned offset from the beginning of the device tree blob (see 8.6). 13 

8.4.1 Lexical structure 14 
 15 
The structure block is composed of a sequence of pieces, each beginning with a token, that is, a big-16 
endian 32-bit integer. Some tokens are followed by extra data, the format of which is determined 17 
by the token value. All tokens shall be aligned on a 32-bit boundary, which may require padding bytes 18 
(with a value of 0x0) to be inserted after the previous token’s data. 19 
 20 
The five token types are as follows: 21 
 22 

o FDT_BEGIN_NODE (0x00000001) 23 
 24 

The FDT_BEGIN_NODE token marks the beginning of a node’s representation. It shall be 25 
followed by the node’s unit name as extra data. The name is stored as a null-terminated string, 26 
and shall include the unit address (see 2.2.1, Node Names), if any. 27 
 28 
The node name is followed by zeroed padding bytes, if necessary for alignment, and then the 29 
next token, which may be any token except FDT_END. 30 

 31 
o FDT_END_NODE (0x00000002) 32 

 33 
The FDT_END_NODE token marks the end of a node’s representation. This token has no 34 
extra data; so it is followed immediately by the next token, which may be any token except 35 
FDT_PROP. 36 

 37 
o FDT_PROP (0x00000003) 38 

 39 
The FDT_PROP token marks the beginning of the representation of one property in the 40 
device tree. It shall be followed by extra data describing the property. This data consists first 41 
of the property’s length and name represented as the following C structure: 42 

 43 
struct { 44 
 uint32_t len; 45 
 uint32_t nameoff; 46 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 92 of 108 
 

} 1 
 2 

Both the fields in this structure are 32-bit big-endian integers. 3 
• len gives the length of the property’s value in bytes (which may be zero, indicating 4 

an empty property, see 2.2.4.2, Property Values). 5 
• nameoff gives an offset into the strings block (see 8.5) at which the property’s 6 

name is stored as a null-terminated string. 7 
 8 

After this structure, the property’s value is given as a byte string of length len. This value is 9 
followed by zeroed padding bytes (if necessary) to align to the next 32-bit boundary and then 10 
the next token, which may be any token except FDT_END. 11 
 12 

o FDT_NOP (0x00000004) 13 
 14 

The FDT_NOP token will be ignored by any program parsing the device tree. This token has 15 
no extra data; so it is followed immediately by the next token, which can be any valid token. 16 
 17 
A property or node definition in the tree can be overwritten with FDT_NOP tokens to remove 18 
it from the tree without needing to move other sections of the tree’s representation in the 19 
device tree blob. 20 

 21 
o FDT_END (0x00000009) 22 

 23 
The FDT_END token marks the end of the structure block. There shall be only one 24 
FDT_END token, and it shall be the last token in the structure block. It has no extra data; so 25 
the byte immediately after the FDT_END token has offset from the beginning of the structure 26 
block equal to the value of the size_dt_struct field in the device tree blob header. 27 

 28 

8.4.2 Tree structure 29 
 30 
The device tree structure is represented as a linear tree: the representation of each node begins with an 31 
FDT_BEGIN_NODE token and ends with an FDT_END_NODE token. The node’s properties and 32 
subnodes (if any) are represented before the FDT_END_NODE, so that the FDT_BEGIN_NODE and 33 
FDT_END_NODE tokens for those subnodes are nested within those of the parent. 34 
 35 
The structure block as a whole consists of the root node’s representation (which contains the 36 
representations for all other nodes), followed by an FDT_END token to mark the end of the structure 37 
block as a whole. 38 
 39 
More precisely, each node’s representation consists of the following components: 40 

• (optionally) any number of FDT_NOP tokens 41 
• FDT_BEGIN_NODE token 42 

o The node’s name as a null-terminated string 43 
o [zeroed padding bytes to align to a 4-byte boundary] 44 

• For each property of the node: 45 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 93 of 108 
 

o (optionally) any number of FDT_NOP tokens 1 
o FDT_PROP token 2 

 property information as given in 8.4.1 3 
 [zeroed padding bytes to align to a 4-byte boundary] 4 

• Representations of all child nodes in this format 5 
• (optionally) any number of FDT_NOP tokens 6 
• FDT_END_NODE token 7 

 8 
Note that this process requires that all property definitions for a particular node precede any subnode 9 
definitions for that node. Although the structure would not be ambiguous if properties and subnodes 10 
were intermingled, the code needed to process a flat tree is simplified by this requirement. 11 

8.5 Strings Block 12 
 13 
The strings block contains strings representing all the property names used in the tree. These null-14 
terminated strings are simply concatenated together in this section, and referred to from the structure 15 
block by an offset into the strings block. 16 
 17 
The strings block has no alignment constraints and may appear at any offset from the beginning of the 18 
device tree blob. 19 
 20 

21 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 94 of 108 
 

8.6 Alignment 1 
 2 
For the data in the memory reservation and structure blocks to be used without unaligned memory 3 
accesses, they shall lie at suitably aligned memory addresses. Specifically, the memory reservation 4 
block shall be aligned to an 8-byte boundary and the structure block to a 4-byte boundary. 5 
 6 
Furthermore, the device tree blob as a whole can be relocated without destroying the alignment of the 7 
subblocks. 8 
 9 
As described in the previous sections, the structure and strings blocks shall have aligned offsets from 10 
the beginning of the device tree blob. To ensure the in-memory alignment of the blocks, it is sufficient 11 
to ensure that the device tree as a whole is loaded at an address aligned to the largest alignment of any 12 
of the subblocks, that is, to an 8-byte boundary. As described in 5.2 (Device Tree) an ePAPR-13 
compliant boot program shall load the device tree blob at such an aligned address before passing it to 14 
the client program. If an ePAPR client program relocates the device tree blob in memory, it should 15 
only do so to another 8-byte aligned address. 16 
 17 

18 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 95 of 108 
 

Appendix A  Device Tree Source Format (version 1) 1 
 2 
The Device Tree Source (DTS) format is a textual representation of a device tree in a form that can be 3 
processed by dtc into a binary device tree in the form expected by the kernel. The following 4 
description is not a formal syntax definition of DTS, but describes the basic constructs used to 5 
represent device trees. 6 
 7 
Node and property definitions 8 
 9 
Device tree nodes are defined with a node name and unit address with braces marking the start and 10 
end of the node definition. They may be preceded by a label. 11 
 12 
 [label:] node-name[@unit-address] { 13 
  [properties definitions] 14 
  [child nodes] 15 
 } 16 
 17 
Nodes may contain property definitions and/or child node definitions. If both are present, properties 18 
shall come before child nodes. 19 
 20 
Property definitions are name value pairs in the form: 21 
 [label:] property-name = value; 22 
 23 
except for properties with empty (zero length) value which have the form: 24 
 [label:] property-name; 25 
 26 
Property values may be defined as an array of 32-bit integer cells, as null-terminated strings, as 27 
bytestrings or a combination of these. 28 
 29 

• Arrays of cells are represented by angle brackets surrounding a space separated list of C-style 30 
integers. Example: 31 

interrupts = <17 0xc>; 32 
 33 

• A 64-bit value is represented with two 32-bit cells. Example: 34 
clock-frequency = <0x00000001 0x00000000>; 35 

 36 
• A null-terminated string value is represented using double quotes (the property value is 37 

considered to include the terminating NULL character). Example: 38 
compatible = "simple-bus"; 39 

 40 
• A bytestring is enclosed in square brackets [ ] with each byte represented by two hexadecimal 41 

digits. Spaces between each byte are optional. Example: 42 
local-mac-address = [00 00 12 34 56 78]; 43 

or equivalently: 44 
local-mac-address = [000012345678]; 45 

 46 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 96 of 108 
 

• Values may have several comma-separated components, which are concatenated together. 1 
Example: 2 

compatible = "ns16550", "ns8250"; 3 
example = <0xf00f0000 19>, "a strange property format"; 4 

 5 
• In a cell array a reference to another node will be expanded to that node’s phandle. 6 

References may be & followed by a node’s label. Example: 7 
interrupt-parent = < &mpic >; 8 

 9 
or they may be & followed by a node’s full path in braces. Example: 10 

interrupt-parent = < &{/soc/interrupt-controller@40000} >; 11 
 12 

• Outside a cell array, a reference to another node will be expanded to that node’s full path. 13 
Example: 14 

ethernet0 = &EMAC0; 15 
 16 

• Labels may also appear before or after any component of a property value, or between cells of 17 
a cell array, or between bytes of a bytestring. Examples: 18 

reg = reglabel: <0 sizelabel: 0x1000000>; 19 
prop = [ab cd ef byte4: 00 ff fe]; 20 
str = start: "string value" end: ; 21 

 22 
File layout 23 
 24 
Version 1 DTS files have the overall layout: 25 
 26 
 /dts-v1/; 27 
 28 
 [memory reservations] 29 
 30 
 / { 31 
  [property definitions] 32 
  [child nodes] 33 
 }; 34 
 35 

• The /dts-v1/; shall be present to identify the file as a version 1 DTS (dts files without this tag 36 
will be treated by dtc as being in the obsolete version 0, which uses a different format for 37 
integers in addition to other small but incompatible changes). 38 

 39 
• Memory reservations define an entry for the device tree blob's memory reservation table. 40 

They have the form: 41 
e.g., /memreserve/ <address> <length>; 42 

 43 
Where <address> and <length> are 64-bit C-style integers. 44 

 45 
• The / { ... }; section defines the root node of the device tree. 46 

 47 
• C style (/* ... */) and C++ style (// ...) comments are supported. 48 

49 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 97 of 108 
 

Appendix B1  Ebony Device Tree 1 
 2 
This appendix shows a complete device tree for the IBM 440-based Ebony system. 3 
 4 
/* 5 
 * Device Tree Source for IBM Ebony 6 
 * 7 
 * Copyright (c) 2006, 2007 IBM Corp. 8 
 * Josh Boyer <jwboyer@linux.vnet.ibm.com>, David Gibson <dwg@au1.ibm.com> 9 
 * 10 
 *  11 
 * 12 
 * This file is licensed under the terms of the GNU General Public 13 
 * License version 2. This program is licensed "as is" without 14 
 * any warranty of any kind, whether express or implied. 15 
 */ 16 
/dts-v1/; 17 
/ { 18 
  #address-cells = <0x2>; 19 
  #size-cells = <0x1>; 20 
  model = "ibm,ebony"; 21 
  compatible = "ibm,ebony"; 22 
  dcr-parent = <&/cpus/cpu@0>; 23 
 24 
  aliases { 25 
    ethernet0 = &EMAC0; 26 
    ethernet1 = &EMAC1; 27 
    serial0 = &UART0; 28 
    serial1 = &UART1; 29 
  }; 30 
 31 
  cpus { 32 
    #address-cells = <0x1>; 33 
    #size-cells = <0x0>; 34 
 35 
    cpu@0 { 36 
      device_type = "cpu"; 37 
      model = "PowerPC,440GP"; 38 
      reg = <0x0>; 39 
      clock-frequency = <0x179a7b00>; 40 
      timebase-frequency = <0x179a7b00>; 41 
      i-cache-line-size = <0x20>; 42 
      d-cache-line-size = <0x20>; 43 
      i-cache-size = <0x8000>; 44 
      d-cache-size = <0x8000>; 45 
      dcr-controller; 46 
      dcr-access-method = "native"; 47 
    }; 48 
  }; 49 
 50 
  memory { 51 
    device_type = "memory"; 52 
    reg = <0x0 0x0 0x8000000>; 53 
  }; 54 
 55 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 98 of 108 
 

  UIC0: interrupt-controller0 { 1 
    compatible = "ibm,uic-440gp", "ibm,uic"; 2 
    interrupt-controller; 3 
    cell-index = <0x0>; 4 
    dcr-reg = <0xc0 0x9>; 5 
    #address-cells = <0x0>; 6 
    #size-cells = <0x0>; 7 
    #interrupt-cells = <0x2>; 8 
  }; 9 
 10 
  UIC1: interrupt-controller1 { 11 
    compatible = "ibm,uic-440gp", "ibm,uic"; 12 
    interrupt-controller; 13 
    cell-index = <0x1>; 14 
    dcr-reg = <0xd0 0x9>; 15 
    #address-cells = <0x0>; 16 
    #size-cells = <0x0>; 17 
    #interrupt-cells = <0x2>; 18 
    interrupt-parent = <&UIC1>; 19 
    interrupts = <0x1e 0x4 0x1f 0x4>; 20 
  }; 21 
 22 
  cpc { 23 
    compatible = "ibm,cpc-440gp"; 24 
    dcr-reg = <0xb0 0x3 0xe0 0x10>; 25 
  }; 26 
 27 
  plb { 28 
    compatible = "ibm,plb-440gp", "ibm,plb4"; 29 
    #address-cells = <0x2>; 30 
    #size-cells = <0x1>; 31 
    ranges; 32 
    clock-frequency = <0x7de2900>; 33 
     34 
    sram { 35 
      compatible = "ibm,sram-440gp"; 36 
      dcr-reg = <0x20 0x8 0xa 0x1>; 37 
    }; 38 
 39 
    dma { 40 
      compatible = "ibm,dma-440gp"; 41 
      dcr-reg = <0x100 0x27>; 42 
    }; 43 
 44 
    MAL0: mcmal { 45 
      compatible = "ibm,mcmal-440gp", "ibm,mcmal"; 46 
      dcr-reg = <0x180 0x62>; 47 
      num-rx-chans = <0x4>; 48 
      num-tx-chans = <0x4>; 49 
      interrupt-parent = <&MAL0>; 50 
      interrupts = <0x0 0x1 0x2 0x3 0x4>; 51 
      #interrupt-cells = <0x1>; 52 
      #address-cells = <0x0>; 53 
      #size-cells = <0x0>; 54 
      interrupt-map = < 55 
        0 &UIC0 a 4 56 
        1 &UCI0 b 4 57 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 99 of 108 
 

        2 &UCI1 0 4 1 
        3 &UCI1 1 4 2 
        4 &UIC1 2 4>; 3 
      interrupt-map-mask = <0xffffffff>; 4 
    }; 5 
 6 
    POB0: opb { 7 
      compatible = "ibm,opb-440gp", "ibm,opb"; 8 
      #address-cells = <0x1>; 9 
      #size-cells = <0x1>; 10 
      ranges = <0x00000000 0x1 0x00000000 0x80000000 11 
        0x80000000 0x1 0x80000000 0x80000000>; 12 
      dcr-reg = <0x90 0xb>; 13 
      interrupt-parent = <&UIC1>; 14 
      interrupts = <0x7 0x4>; 15 
      clock-frequency = <0x3ef1480>; 16 
 17 
      ebc { 18 
        compatible = "ibm,ebc-440gp", "ibm,ebc"; 19 
        dcr-reg = <0x12 0x2>; 20 
        #address-cells = <0x2>; 21 
        #size-cells = <0x1>; 22 
        clock-frequency = <0x3ef1480>; 23 
        ranges = < 24 
          0x0 0x0 0xfff00000 0x100000 25 
          0x1 0x0 0x48000000 0x100000 26 
          0x2 0x0 0xff800000 0x400000 27 
          0x3 0x0 0x48200000 0x100000 28 
          0x7 0x0 0x48300000 0x100000>; 29 
        interrupts = <0x5 0x4>; 30 
        interrupt-parent = <&UIC1>; 31 
 32 
        fpga@7,0 { 33 
          compatible = "Ebony-FPGA"; 34 
          reg = <0x7 0x0 0x10>; 35 
          virtual-reg = <0xe8300000>; 36 
        }; 37 
 38 
        ir@3,0 { 39 
          reg = <0x3 0x0 0x10>; 40 
        }; 41 
 42 
        large-flash@2,0 { 43 
          compatible = "jedec-flash"; 44 
          bank-width = <0x1>; 45 
          reg = <0x2 0x0 0x400000>; 46 
          #address-cells = <0x1>; 47 
          #size-cells = <0x1>; 48 
 49 
          partition@380000 { 50 
            reg = <0x380000 0x80000>; 51 
            label = "firmware"; 52 
          }; 53 
 54 
          partition@0 { 55 
            reg = <0x0 0x380000>; 56 
            label = "fs"; 57 
          }; 58 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 100 of 108 
 

        }; 1 
2 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 101 of 108 
 

 1 
        nvram@1,0 { 2 
          compatible = "ds1743-nvram"; 3 
          reg = <0x1 0x0 0x2000>; 4 
          #bytes = <0x2000>; 5 
        }; 6 
 7 
        small-flash@0,80000 { 8 
          compatible = "jedec-flash"; 9 
          bank-width = <0x1>; 10 
          reg = <0x0 0x80000 0x80000>; 11 
          #address-cells = <0x1>; 12 
          #size-cells = <0x1>; 13 
 14 
          partition@0 { 15 
            read-only; 16 
            reg = <0x0 0x80000>; 17 
            label = "OpenBIOS"; 18 
          }; 19 
        }; 20 
      }; 21 
       22 
      UART0: serial@40000200 { 23 
        device_type = "serial"; 24 
        compatible = "ns16550"; 25 
        reg = <0x40000200 0x8>; 26 
        virtual-reg = <0xe0000200>; 27 
        clock-frequency = <0xa8c000>; 28 
        current-speed = <0x2580>; 29 
        interrupts = <0x0 0x4>; 30 
        interrupt-parent = <&UIC0>; 31 
      }; 32 
 33 
      UART1: serial@40000300 { 34 
        device_type = "serial"; 35 
        compatible = "ns16550"; 36 
        reg = <0x40000300 0x8>; 37 
        virtual-reg = <0xe0000300>; 38 
        clock-frequency = <0xa8c000>; 39 
        current-speed = <0x2580>; 40 
        interrupts = <0x1 0x4>; 41 
        interrupt-parent = <&UIC0>; 42 
      }; 43 
 44 
      i2c@40000400 { 45 
        compatible = "ibm,iic-440gp", "ibm,iic"; 46 
        reg = <0x40000400 0x14>; 47 
        interrupts = <0x2 0x4>; 48 
        interrupt-parent = <&UIC0>; 49 
      }; 50 
 51 
      i2c@40000500 { 52 
        compatible = "ibm,iic-440gp", "ibm,iic"; 53 
        reg = <0x40000500 0x14>; 54 
        interrupts = <0x3 0x4>; 55 
        interrupt-parent = <&UIC0>; 56 
      }; 57 

58 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 102 of 108 
 

 1 
      gpio@40000700 { 2 
        compatible = "ibm,gpio-440gp"; 3 
        reg = <0x40000700 0x20>; 4 
      }; 5 
 6 
      ZMII0: emac-zmii@40000780 { 7 
        compatible = "ibm,zmii-440gp", "ibm,zmii"; 8 
        reg = <0x40000780 0xc>; 9 
      }; 10 
 11 
      EMAC0: ethernet@40000800 { 12 
        linux,network-index = <0x0>; 13 
        device_type = "network"; 14 
        compatible = "ibm,emac-440gp", "ibm,emac"; 15 
        interrupts = <0x1c 0x4 0x1d 0x4>; 16 
        interrupt-parent = <&UIC1>; 17 
        reg = <0x40000800 0x70>; 18 
        local-mac-address = [00 04 ac e3 1b 0b]; 19 
        mal-device = <&MAL0>; 20 
        mal-tx-channel = <0x0 0x1>; 21 
        mal-rx-channel = <0x0>; 22 
        cell-index = <0x0>; 23 
        max-frame-size = <0x5dc>; 24 
        rx-fifo-size = <0x1000>; 25 
        tx-fifo-size = <0x800>; 26 
        phy-mode = "rmii"; 27 
        phy-map = <0x1>; 28 
        zmii-device = <&ZMII0>; 29 
        zmii-channel = <0x0>; 30 
      }; 31 
 32 
      EMAC1: ethernet@40000900 { 33 
        linux,network-index = <0x1>; 34 
        device_type = "network"; 35 
        compatible = "ibm,emac-440gp", "ibm,emac"; 36 
        interrupts = <0x1e 0x4 0x1f 0x4>; 37 
        interrupt-parent = <&UIC1>; 38 
        reg = <0x40000900 0x70>; 39 
        local-mac-address = [00 04 ac e3 1b 0c]; 40 
        mal-device = <&MAL0>; 41 
        mal-tx-channel = <0x2 0x3>; 42 
        mal-rx-channel = <0x1>; 43 
        cell-index = <0x1>; 44 
        max-frame-size = <0x5dc>; 45 
        rx-fifo-size = <0x1000>; 46 
        tx-fifo-size = <0x800>; 47 
        phy-mode = "rmii"; 48 
        phy-map = <0x1>; 49 
        zmii-device = <&ZMII0>; 50 
        zmii-channel = <0x1>; 51 
      }; 52 
 53 
      gpt@40000a00 { 54 
        reg = <0x40000a00 0xd4>; 55 
        interrupts = <0x12 0x4 0x13 0x4 0x14 0x4 0x15 0x4 0x16 0x4>; 56 
        interrupt-parent = <&UIC0>; 57 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 103 of 108 
 

      }; 1 
    }; 2 
 3 
    PCIX0: pci@20ec00000 { 4 
      device_type = "pci"; 5 
      #interrupt-cells = <0x1>; 6 
      #size-cells = <0x2>; 7 
      #address-cells = <0x3>; 8 
      compatible = "ibm,plb440gp-pcix", "ibm,plb-pcix"; 9 
      primary; 10 
      reg = <0x2 0xec00000 0x8 11 
        0x0 0x0 0x0 12 
        0x2 0xed00000 0x4 13 
        0x2 0xec80000 0xf0 14 
        0x2 0xec80100 0xfc>; 15 
 16 
      ranges = <0x2000000 0x0 0x80000000 0x3 0x80000000 0x0 0x80000000 17 
        0x1000000 0x0 0x0 0x2 0x8000000 0x0 0x10000>; 18 
 19 
      dma-ranges = <0x42000000 0x0 0x0 0x0 0x0 0x0 0x80000000>; 20 
 21 
      interrupt-map-mask = <0xf800 0x0 0x0 0x0>; 22 
      interrupt-map = < 23 
      0x800 0x0 0x0 0x0 &UIC0 0x17 0x8 24 
      0x1000 0x0 0x0 0x0 &UIC0 0x18 0x8 25 
      0x1800 0x0 0x0 0x0 &UIC0 0x19 0x8 26 
      0x2000 0x0 0x0 0x0 &UIC0 0x1a 0x8>; 27 
    }; 28 
  }; 29 
}; 30 
 31 
 32 

33 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 104 of 108 
 

Appendix B2 – MPC8572DS Device Tree 1 
This appendix shows a device tree for the Freescale MPC8572DS system. Note: to 2 
simplify the example, some portions of the device tree have been removed. 3 
 4 
/* 5 
 * MPC8572 DS Device Tree Source 6 
 * 7 
 * Copyright 2007-2009 Freescale Semiconductor Inc. 8 
 * 9 
 * This program is free software; you can redistribute  it and/or modify it 10 
 * under  the terms of  the GNU General  Public License as published by the 11 
 * Free Software Foundation;  either version 2 of the  License, or (at your 12 
 * option) any later version. 13 
 */ 14 
 15 
/dts-v1/; 16 
/ { 17 
    model = "fsl,MPC8572DS"; 18 
    compatible = "fsl,MPC8572DS"; 19 
    #address-cells = <2>; 20 
    #size-cells = <2>; 21 
 22 
    aliases { 23 
        ethernet0 = &enet0; 24 
        ethernet1 = &enet1; 25 
        ethernet2 = &enet2; 26 
        ethernet3 = &enet3; 27 
        serial0 = &serial0; 28 
        serial1 = &serial1; 29 
        pci0 = &pci0; 30 
        pci1 = &pci1; 31 
        pci2 = &pci2; 32 
    }; 33 
 34 
    cpus { 35 
        #address-cells = <1>; 36 
        #size-cells = <0>; 37 
 38 
        cpu@0 { 39 
            device_type = "cpu"; 40 
            reg = <0x0>; 41 
            d-cache-line-size = <32>;    // 32 bytes 42 
            i-cache-line-size = <32>;    // 32 bytes 43 
            d-cache-size = <0x8000>;        // L1, 32K 44 
            i-cache-size = <0x8000>;        // L1, 32K 45 
            timebase-frequency = <0>; 46 
            bus-frequency = <0>; 47 
            clock-frequency = <0>; 48 
            next-level-cache = <&L2>; 49 
        }; 50 
 51 
        cpu@1 { 52 
            device_type = "cpu"; 53 
            reg = <0x1>; 54 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 105 of 108 
 

            d-cache-line-size = <32>;    // 32 bytes 1 
            i-cache-line-size = <32>;    // 32 bytes 2 
            d-cache-size = <0x8000>;        // L1, 32K 3 
            i-cache-size = <0x8000>;        // L1, 32K 4 
            timebase-frequency = <0>; 5 
            bus-frequency = <0>; 6 
            clock-frequency = <0>; 7 
            next-level-cache = <&L2>; 8 
        }; 9 
    }; 10 
 11 
    memory { 12 
        device_type = "memory"; 13 
    }; 14 
 15 
    soc { 16 
        #address-cells = <1>; 17 
        #size-cells = <1>; 18 
        compatible = "simple-bus"; 19 
        ranges = <0x0 0 0xffe00000 0x100000>; 20 
        bus-frequency = <0>;        // Filled out by uboot. 21 
        interrupt-parent = <&mpic>; 22 
 23 
        ecm-law@0 { 24 
            compatible = "fsl,ecm-law"; 25 
            reg = <0x0 0x1000>; 26 
            fsl,num-laws = <12>; 27 
        }; 28 
 29 
        ecm@1000 { 30 
            compatible = "fsl,mpc8572-ecm", "fsl,ecm"; 31 
            reg = <0x1000 0x1000>; 32 
            interrupts = <17 2>; 33 
        }; 34 
 35 
        memory-controller@2000 { 36 
            compatible = "fsl,mpc8572-memory-controller"; 37 
            reg = <0x2000 0x1000>; 38 
            interrupts = <18 2>; 39 
        }; 40 
 41 
        memory-controller@6000 { 42 
            compatible = "fsl,mpc8572-memory-controller"; 43 
            reg = <0x6000 0x1000>; 44 
            interrupts = <18 2>; 45 
        }; 46 
 47 
        L2: l2-cache-controller@20000 { 48 
            compatible = "fsl,mpc8572-l2-cache-controller"; 49 
            reg = <0x20000 0x1000>; 50 
            cache-line-size = <32>;    // 32 bytes 51 
            cache-size = <0x100000>; // L2, 1M 52 
            interrupts = <16 2>; 53 
        }; 54 
 55 
        i2c@3000 { 56 
            #address-cells = <1>; 57 
            #size-cells = <0>; 58 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 106 of 108 
 

            cell-index = <0>; 1 
            compatible = "fsl-i2c"; 2 
            reg = <0x3000 0x100>; 3 
            interrupts = <43 2>; 4 
            dfsrr; 5 
        }; 6 
 7 
        enet0: ethernet@24000 { 8 
            #address-cells = <1>; 9 
            #size-cells = <1>; 10 
            cell-index = <0>; 11 
            model = "eTSEC"; 12 
            compatible = "gianfar"; 13 
            reg = <0x24000 0x1000>; 14 
            ranges = <0x0 0x24000 0x1000>; 15 
            local-mac-address = [ 00 00 00 00 00 00 ]; 16 
            interrupts = <29 2 30 2 34 2>; 17 
            tbi-handle = <&tbi0>; 18 
            phy-handle = <&phy0>; 19 
            phy-connection-type = "rgmii-id"; 20 
 21 
            mdio@520 { 22 
                #address-cells = <1>; 23 
                #size-cells = <0>; 24 
                compatible = "fsl,gianfar-mdio"; 25 
                reg = <0x520 0x20>; 26 
 27 
                phy0: ethernet-phy@0 { 28 
                    interrupts = <10 1>; 29 
                    reg = <0x0>; 30 
                }; 31 
 32 
                tbi0: tbi-phy@11 { 33 
                    reg = <0x11>; 34 
                    device_type = "tbi-phy"; 35 
                }; 36 
            }; 37 
        }; 38 
 39 
        serial0: serial@4500 { 40 
            cell-index = <0>; 41 
            compatible = "ns16550"; 42 
            reg = <0x4500 0x100>; 43 
            clock-frequency = <0>; 44 
            interrupts = <42 2>; 45 
        }; 46 
 47 
        serial1: serial@4600 { 48 
            cell-index = <1>; 49 
            compatible = "ns16550"; 50 
            reg = <0x4600 0x100>; 51 
            clock-frequency = <0>; 52 
            interrupts = <42 2>; 53 
        }; 54 
 55 
        global-utilities@e0000 {    //global utilities block 56 
            compatible = "fsl,mpc8572-guts"; 57 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 
 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 107 of 108 
 

            reg = <0xe0000 0x1000>; 1 
            fsl,has-rstcr; 2 
        }; 3 
 4 
        msi@41600 { 5 
            compatible = "fsl,mpc8572-msi", "fsl,mpic-msi"; 6 
            reg = <0x41600 0x80>; 7 
            msi-available-ranges = <0 0x100>; 8 
            interrupts = < 9 
                0xe0 0 10 
                0xe1 0 11 
                0xe2 0 12 
                0xe3 0 13 
                0xe4 0 14 
                0xe5 0 15 
                0xe6 0 16 
                0xe7 0>; 17 
        }; 18 
 19 
        crypto@30000 { 20 
            compatible = "fsl,sec3.0", "fsl,sec2.4", "fsl,sec2.2", 21 
                     "fsl,sec2.1", "fsl,sec2.0"; 22 
            reg = <0x30000 0x10000>; 23 
            interrupts = <45 2 58 2>; 24 
            fsl,num-channels = <4>; 25 
            fsl,channel-fifo-len = <24>; 26 
            fsl,exec-units-mask = <0x9fe>; 27 
            fsl,descriptor-types-mask = <0x3ab0ebf>; 28 
        }; 29 
 30 
        mpic: pic@40000 { 31 
            interrupt-controller; 32 
            #address-cells = <0>; 33 
            #interrupt-cells = <2>; 34 
            reg = <0x40000 0x40000>; 35 
            compatible = "chrp,open-pic"; 36 
        }; 37 
    }; 38 
 39 
    pci1: pcie@ffe09000 { 40 
        compatible = "fsl,mpc8548-pcie"; 41 
        #interrupt-cells = <1>; 42 
        #size-cells = <2>; 43 
        #address-cells = <3>; 44 
        reg = <0 0xffe09000 0 0x1000>; 45 
        bus-range = <0 255>; 46 
        ranges = <0x2000000 0x0 0xa0000000 0 0xa0000000 0x0 0x20000000 47 
              0x1000000 0x0 0x00000000 0 0xffc10000 0x0 0x00010000>; 48 
        clock-frequency = <33333333>; 49 
        interrupt-parent = <&mpic>; 50 
        interrupts = <25 2>; 51 
        interrupt-map-mask = <0xf800 0x0 0x0 0x7>; 52 
        interrupt-map = < 53 
            /* IDSEL 0x0 */ 54 
            0000 0x0 0x0 0x1 &mpic 0x4 0x1 55 
            0000 0x0 0x0 0x2 &mpic 0x5 0x1 56 
            0000 0x0 0x0 0x3 &mpic 0x6 0x1 57 
            0000 0x0 0x0 0x4 &mpic 0x7 0x1 58 



Version 1.1 – 7 March 2011  Power.org ePAPR 
 

 

 

 

Copyright © 2008, 2011 Power.org, Inc. All Rights Reserved. 
 

Page 108 of 108 
 

            >; 1 
        pcie@0 { 2 
            reg = <0x0 0x0 0x0 0x0 0x0>; 3 
            #size-cells = <2>; 4 
            #address-cells = <3>; 5 
            ranges = <0x2000000 0x0 0xa0000000 6 
                  0x2000000 0x0 0xa0000000 7 
                  0x0 0x20000000 8 
 9 
                  0x1000000 0x0 0x0 10 
                  0x1000000 0x0 0x0 11 
                  0x0 0x10000>; 12 
        }; 13 
    }; 14 
 15 
}; 16 


	Revision History
	1 Introduction
	1.1 Purpose and Scope
	1.2  Relationship to IEEE™ 1275
	1.3 32-bit and 64-bit Support
	1.4  References
	1.5 Definition of Terms

	2  The Device Tree
	2.1 Overview
	2.2 Device Tree Structure and Conventions
	2.2.1 Node Names
	2.2.1.1 Node Name Requirements

	2.2.2  Generic Names Recommendation
	2.2.3  Path Names
	2.2.4 Properties
	2.2.4.1 Property Names
	2.2.4.2  Property Values


	2.3  Standard Properties
	2.3.1 compatible
	2.3.2 model
	2.3.3 phandle
	2.3.4  status
	2.3.5  #address-cells and #size-cells
	2.3.6  reg
	2.3.7 virtual-reg
	2.3.8  ranges
	2.3.9  dma-ranges
	2.3.10  name
	2.3.11 device_type

	2.4  Interrupts and Interrupt Mapping
	2.4.1 Properties for Interrupt Generating Devices
	2.4.1.1 interrupts
	2.4.1.2 interrupt-parent

	2.4.2  Properties for Interrupt Controllers
	2.4.2.1 #interrupt-cells
	2.4.2.2 interrupt-controller

	2.4.3 Interrupt Nexus Properties
	2.4.3.1 interrupt-map
	2.4.3.2 interrupt-map-mask
	2.4.3.3 #interrupts-cells

	2.4.4  Interrupt Mapping Example


	3  Device Node Requirements
	3.1 Base Device Node Types
	3.2 Root node
	3.3  aliases node
	3.4  Memory node
	3.5 Chosen
	3.6 CPUS Node Properties
	3.7 CPU Node Properties
	3.7.1 General Properties of CPU nodes
	3.7.2 TLB Properties
	3.7.3  Internal (L1) Cache Properties
	3.7.4  Example

	3.8 Multi-level and Shared Caches

	4  Client Program Image Format
	4.1 Variable Address Image Format
	4.1.1 ELF Basics
	4.1.2 Boot Program Requirements
	4.1.2.1 Processing of PT_LOAD segments
	4.1.2.2 Entry point

	4.1.3 Client Program Requirements

	4.2 Fixed Address Image Format

	5  Client Program Boot Requirements
	5.1 Boot and Secondary CPUs
	5.2 Device Tree
	5.3 Initial Mapped Areas
	5.4 CPU Entry Point Requirements
	5.4.1 Boot CPU Initial Register State
	1.1.1
	5.4.2 I/O Devices State
	5.4.3 Initial I/O Mappings (IIO)
	5.4.4 Boot CPU Entry Requirements: Real Mode
	5.4.5 Boot CPU Entry Requirements for IMAs: Book IIII-E

	5.5 Symmetric Multiprocessing (SMP) Boot Requirements
	5.5.1  Overview
	5.5.2  Spin Table
	5.5.2.1  Overview
	5.5.2.2 Boot Program Requirements
	5.5.2.3 Client Program Requirements

	5.5.3  Implementation-Specific Release from Reset
	5.5.4  Timebase Synchronization

	5.6  Asymmetric Configuration Considerations

	6  Device Bindings
	6.1 Binding Guidelines
	6.1.1 General Principles
	6.1.2  Miscellaneous Properties
	6.1.2.1 clock-frequency
	6.1.2.2 reg-shift
	6.1.2.3 label


	1.1
	6.2  Serial devices
	6.2.1 Serial Class Binding
	6.2.1.1 clock-frequency
	6.2.1.2 current-speed

	6.2.2  National Semiconductor 16450/16550 Compatible UART Requirements

	6.3 Network devices
	6.3.1 Network Class Binding
	6.3.1.1 address-bits
	6.3.1.2  local-mac-address
	6.3.1.3 mac-address
	6.3.1.4 max-frame-size

	6.3.2 Ethernet specific considerations
	6.3.2.1  max-speed
	6.3.2.2 phy-connection-type
	6.3.2.3 phy-handle


	6.4 open PIC Interrupt Controllers
	6.5 simple-bus

	7  Virtualization
	7.1 Overview
	7.2 Hypercall Application Binary Interface (ABI)
	7.3 ePAPR Hypercall Token Definition
	7.4 Hypercall Return Codes
	7.5 Hypervisor Node
	7.6 ePAPR Virtual Interrupt Controller Services
	1.1.1
	7.6.1 Virtual Interrupt Controller Device Tree Representation
	7.6.1.1 Interrupt Controller Node
	7.6.1.2 Interrupt Specifiers
	7.6.1.3  IPI Representation

	7.6.2 ePAPR Interrupt Controller Hypercalls
	7.6.2.1 EV_INT_SET_CONFIG
	7.6.2.2  EV_INT_GET_CONFIG
	7.6.2.3 EV_INT_SET_MASK
	7.6.2.4  EV_INT_GET_MASK
	7.6.2.5 EV_INT_IACK
	7.6.2.6  EV_INT_EOI
	7.6.2.7  EV_INT_SEND_IPI
	7.6.2.8  EV_INT_SET_TASK_PRIORITY
	7.6.2.9  EV_INT_GET_TASK_PRIORITY


	7.7  Byte-channel Services
	7.7.1 Overview
	7.7.2  Interrupts and Guest Device Tree Representation
	7.7.3  Byte-channel Hypercalls
	7.7.3.1 EV_BYTE_CHANNEL_SEND
	7.7.3.2 EV_BYTE_CHANNEL_RECEIVE
	7.7.3.3 EV_BYTE_CHANNEL_POLL


	7.8  Inter-partition Doorbells
	7.8.1 Overview
	7.8.2 Doorbell Send Endpoints
	7.8.3 Doorbell Receive Endpoints
	7.8.4 Doorbell Hypercall

	7.9 msgsnd
	7.9.1 EV_MSGSND

	1.1
	7.10 Idle
	EV_IDLE


	8  Flat Device Tree Physical Structure
	8.1 Versioning
	8.2 Header
	8.3 Memory Reservation Block
	8.3.1 Purpose
	8.3.2 Format

	8.4 Structure Block
	8.4.1 Lexical structure
	8.4.2 Tree structure

	8.5 Strings Block
	8.6  Alignment

	Appendix A  Device Tree Source Format (version 1)
	Appendix B1  Ebony Device Tree
	Appendix B2 – MPC8572DS Device Tree

