основы сложной математики (basics of complex mathematics)
Имя (Name)
complex - basics of complex mathematics
Синопсис (Synopsis)
#include <complex.h>
Описание (Description)
Complex numbers are numbers of the form z = a+b*i, where a and b
are real numbers and i = sqrt(-1), so that i*i = -1.
There are other ways to represent that number. The pair (a,b) of
real numbers may be viewed as a point in the plane, given by X-
and Y-coordinates. This same point may also be described by
giving the pair of real numbers (r,phi), where r is the distance
to the origin O, and phi the angle between the X-axis and the
line Oz. Now z = r*exp(i*phi) = r*(cos(phi)+i*sin(phi)).
The basic operations are defined on z = a+b*i and w = c+d*i as:
addition: z+w = (a+c) + (b+d)*i
multiplication: z*w = (a*c - b*d) + (a*d + b*c)*i
division: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c - a*d)/(c*c +
d*d))*i
Nearly all math function have a complex counterpart but there are
some complex-only functions.
Примеры (Examples)
Your C-compiler can work with complex numbers if it supports the
C99 standard. Link with -lm. The imaginary unit is represented
by I.
/* check that exp(i * pi) == -1 */
#include <math.h> /* for atan */
#include <stdio.h>
#include <complex.h>
int
main(void)
{
double pi = 4 * atan(1.0);
double complex z = cexp(I * pi);
printf("%f + %f * i\n", creal(z), cimag(z));
}
Смотри также (See also)
cabs(3), cacos(3), cacosh(3), carg(3), casin(3), casinh(3),
catan(3), catanh(3), ccos(3), ccosh(3), cerf
(3), cexp(3),
cexp2(3), cimag(3), clog(3), clog10(3), clog2(3), conj(3),
cpow(3), cproj(3), creal(3), csin(3), csinh(3), csqrt(3),
ctan(3), ctanh(3)