Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   stap    ( 1 )

переводчик / драйвер скрипта systemtap (systemtap script translator/driver)

PROCESSING

The translator begins pass 1 by parsing the given input script,
       and all scripts (files named *.stp) found in a tapset directory.
       The directories listed with -I are processed in sequence, each
       processed in "guru mode".  For each directory, a number of
       subdirectories are also searched.  These subdirectories are
       derived from the selected kernel version (the -R option), in
       order to allow more kernel-version-specific scripts to override
       less specific ones.  For example, for a kernel version
       2.6.12-23.FC3 the following patterns would be searched, in
       sequence: 2.6.12-23.FC3/*.stp, 2.6.12/*.stp, 2.6/*.stp, and
       finally *.stp.  Stopping the translator after pass 1 causes it to
       print the parse trees.

In pass 2, the translator analyzes the input script to resolve symbols and types. References to variables, functions, and probe aliases that are unresolved internally are satisfied by searching through the parsed tapset script files. If any tapset script file is selected because it defines an unresolved symbol, then the entirety of that file is added to the translator's resolution queue. This process iterates until all symbols are resolved and a subset of tapset script files is selected.

Next, all probe point descriptions are validated against the wide variety supported by the translator. Probe points that refer to code locations ("synchronous probe points") require the appropriate kernel debugging information to be installed. In the associated probe handlers, target-side variables (whose names begin with "$") are found and have their run-time locations decoded.

Next, all probes and functions are analyzed for optimization opportunities, in order to remove variables, expressions, and functions that have no useful value and no side-effect. Embedded-C functions are assumed to have side-effects unless they include the magic string /* pure */. Since this optimization can hide latent code errors such as type mismatches or invalid $context variables, it sometimes may be useful to disable the optimizations with the -u option.

Finally, all variable, function, parameter, array, and index types are inferred from context (literals and operators). Stopping the translator after pass 2 causes it to list all the probes, functions, and variables, along with all inferred types. Any inconsistent or unresolved types cause an error.

In pass 3, the translator writes C code that represents the actions of all selected script files, and creates a Makefile to build that into a kernel object. These files are placed into a temporary directory. Stopping the translator at this point causes it to print the contents of the C file.

In pass 4, the translator invokes the Linux kernel build system to create the actual kernel object file. This involves running make in the temporary directory, and requires a kernel module build system (headers, config and Makefiles) to be installed in the usual spot /lib/modules/VERSION/build. Stopping the translator after pass 4 is the last chance before running the kernel object. This may be useful if you want to archive the file.

In pass 5, the translator invokes the systemtap auxiliary program staprun program for the given kernel object. This program arranges to load the module then communicates with it, copying trace data from the kernel into temporary files, until the user sends an interrupt signal. Any run-time error encountered by the probe handlers, such as running out of memory, division by zero, exceeding nesting or runtime limits, results in a soft error indication. Soft errors in excess of MAXERRORS block of all subsequent probes (except error-handling probes), and terminate the session. Finally, staprun unloads the module, and cleans up.

ABNORMAL TERMINATION One should avoid killing the stap process forcibly, for example with SIGKILL, because the stapio process (a child process of the stap process) and the loaded module may be left running on the system. If this happens, send SIGTERM or SIGINT to any remaining stapio processes, then use rmmod to unload the systemtap module.