Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   get_thread_area    ( 2 )

управлять информацией о локальном хранилище потока (manipulate thread-local storage information)

Имя (Name)

get_thread_area, set_thread_area - manipulate thread-local
       storage information

Синопсис (Synopsis)

#include <sys/syscall.h>     /* Definition of SYS_* constants */
       #include <unistd.h>

#if defined __i386__ || defined __x86_64__ # include <asm/ldt.h> /* Definition of struct user_desc */

int syscall(SYS_get_thread_area, struct user_desc *u_info); int syscall(SYS_set_thread_area, struct user_desc *u_info);

#elif defined __m68k__

int syscall(SYS_get_thread_area); int syscall(SYS_set_thread_area, unsigned long tp);

#elif defined __mips__

int syscall(SYS_set_thread_area, unsigned long addr);

#endif

Note: glibc provides no wrappers for these system calls, necessitating the use of syscall(2).


Описание (Description)

These calls provide architecture-specific support for a thread-
       local storage implementation.  At the moment, set_thread_area()
       is available on m68k, MIPS, and x86 (both 32-bit and 64-bit
       variants); get_thread_area() is available on m68k and x86.

On m68k and MIPS, set_thread_area() allows storing an arbitrary pointer (provided in the tp argument on m68k and in the addr argument on MIPS) in the kernel data structure associated with the calling thread; this pointer can later be retrieved using get_thread_area() (see also NOTES for information regarding obtaining the thread pointer on MIPS).

On x86, Linux dedicates three global descriptor table (GDT) entries for thread-local storage. For more information about the GDT, see the Intel Software Developer's Manual or the AMD Architecture Programming Manual.

Both of these system calls take an argument that is a pointer to a structure of the following type:

struct user_desc { unsigned int entry_number; unsigned int base_addr; unsigned int limit; unsigned int seg_32bit:1; unsigned int contents:2; unsigned int read_exec_only:1; unsigned int limit_in_pages:1; unsigned int seg_not_present:1; unsigned int useable:1; #ifdef __x86_64__ unsigned int lm:1; #endif };

get_thread_area() reads the GDT entry indicated by u_info->entry_number and fills in the rest of the fields in u_info.

set_thread_area() sets a TLS entry in the GDT.

The TLS array entry set by set_thread_area() corresponds to the value of u_info->entry_number passed in by the user. If this value is in bounds, set_thread_area() writes the TLS descriptor pointed to by u_info into the thread's TLS array.

When set_thread_area() is passed an entry_number of -1, it searches for a free TLS entry. If set_thread_area() finds a free TLS entry, the value of u_info->entry_number is set upon return to show which entry was changed.

A user_desc is considered "empty" if read_exec_only and seg_not_present are set to 1 and all of the other fields are 0. If an "empty" descriptor is passed to set_thread_area(), the corresponding TLS entry will be cleared. See BUGS for additional details.

Since Linux 3.19, set_thread_area() cannot be used to write non- present segments, 16-bit segments, or code segments, although clearing a segment is still acceptable.


Возвращаемое значение (Return value)

On x86, these system calls return 0 on success, and -1 on
       failure, with errno set to indicate the error.

On MIPS and m68k, set_thread_area() always returns 0. On m68k, get_thread_area() returns the thread area pointer value (previously set via set_thread_area()).


Ошибки (Error)

EFAULT u_info is an invalid pointer.

EINVAL u_info->entry_number is out of bounds.

ENOSYS get_thread_area() or set_thread_area() was invoked as a 64-bit system call.

ESRCH (set_thread_area()) A free TLS entry could not be located.


Версии (Versions)

set_thread_area() first appeared in Linux 2.5.29.
       get_thread_area() first appeared in Linux 2.5.32.

Стандарты (Conforming to)

set_thread_area() and get_thread_area() are Linux-specific and
       should not be used in programs that are intended to be portable.

Примечание (Note)

These system calls are generally intended for use only by
       threading libraries.

arch_prctl(2) can interfere with set_thread_area() on x86. See arch_prctl(2) for more details. This is not normally a problem, as arch_prctl(2) is normally used only by 64-bit programs.

On MIPS, the current value of the thread area pointer can be obtained using the instruction:

rdhwr dest, $29

This instruction traps and is handled by kernel.


Ошибки (баги) (Bugs)

On 64-bit kernels before Linux 3.19, one of the padding bits in
       user_desc, if set, would prevent the descriptor from being
       considered empty (see modify_ldt(2)).  As a result, the only
       reliable way to clear a TLS entry is to use memset(3) to zero the
       entire user_desc structure, including padding bits, and then to
       set the read_exec_only and seg_not_present bits.  On Linux 3.19,
       a user_desc consisting entirely of zeros except for entry_number
       will also be interpreted as a request to clear a TLS entry, but
       this behaved differently on older kernels.

Prior to Linux 3.19, the DS and ES segment registers must not reference TLS entries.


Смотри также (See also)

arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA
       and PTRACE_SET_THREAD_AREA)