перемещать объекты и ссылки по архиву (Move objects and refs by archive)
Имя (Name)
git-bundle - Move objects and refs by archive
Синопсис (Synopsis)
git bundle create [-q | --quiet | --progress | --all-progress] [--all-progress-implied]
[--version=<version>] <file> <git-rev-list-args>
git bundle verify [-q | --quiet] <file>
git bundle list-heads <file> [<refname>...]
git bundle unbundle <file> [<refname>...]
Описание (Description)
Create, unpack, and manipulate "bundle" files. Bundles are used
for the "offline" transfer of Git objects without an active
"server" sitting on the other side of the network connection.
They can be used to create both incremental and full backups of a
repository, and to relay the state of the references in one
repository to another.
Git commands that fetch or otherwise "read" via protocols such as
ssh://
and https://
can also operate on bundle files. It is
possible git-clone(1) a new repository from a bundle, to use
git-fetch(1) to fetch from one, and to list the references
contained within it with git-ls-remote(1). There's no
corresponding "write" support, i.e.a git push into a bundle is
not supported.
See the "EXAMPLES" section below for examples of how to use
bundles.
BUNDLE FORMAT
Bundles are .pack
files (see git-pack-objects(1)) with a header
indicating what references are contained within the bundle.
Like the the packed archive format itself bundles can either be
self-contained, or be created using exclusions. See the "OBJECT
PREREQUISITES" section below.
Bundles created using revision exclusions are "thin packs"
created using the --thin
option to git-pack-objects(1), and
unbundled using the --fix-thin
option to git-index-pack(1).
There is no option to create a "thick pack" when using revision
exclusions, users should not be concerned about the difference.
By using "thin packs" bundles created using exclusions are
smaller in size. That they're "thin" under the hood is merely
noted here as a curiosity, and as a reference to other
documentation
See the bundle-format
documentation[1] for more details and the
discussion of "thin pack" in the pack format documentation
[2] for
further details.
Параметры (Options)
create [options] <file> <git-rev-list-args>
Used to create a bundle named file. This requires the
<git-rev-list-args> arguments to define the bundle contents.
options contains the options specific to the git bundle
create subcommand.
verify <file>
Used to check that a bundle file is valid and will apply
cleanly to the current repository. This includes checks on
the bundle format itself as well as checking that the
prerequisite commits exist and are fully linked in the
current repository. git bundle prints a list of missing
commits, if any, and exits with a non-zero status.
list-heads <file>
Lists the references defined in the bundle. If followed by a
list of references, only references matching those given are
printed out.
unbundle <file>
Passes the objects in the bundle to git index-pack for
storage in the repository, then prints the names of all
defined references. If a list of references is given, only
references matching those in the list are printed. This
command is really plumbing, intended to be called only by git
fetch.
<git-rev-list-args>
A list of arguments, acceptable to git rev-parse and git
rev-list (and containing a named ref, see SPECIFYING
REFERENCES below), that specifies the specific objects and
references to transport. For example, master~10..master
causes the current master reference to be packaged along with
all objects added since its 10th ancestor commit. There is no
explicit limit to the number of references and objects that
may be packaged.
[<refname>...]
A list of references used to limit the references reported as
available. This is principally of use to git fetch, which
expects to receive only those references asked for and not
necessarily everything in the pack (in this case, git bundle
acts like git fetch-pack).
--progress
Progress status is reported on the standard error stream by
default when it is attached to a terminal, unless -q is
specified. This flag forces progress status even if the
standard error stream is not directed to a terminal.
--all-progress
When --stdout is specified then progress report is displayed
during the object count and compression phases but inhibited
during the write-out phase. The reason is that in some cases
the output stream is directly linked to another command which
may wish to display progress status of its own as it
processes incoming pack data. This flag is like --progress
except that it forces progress report for the write-out phase
as well even if --stdout is used.
--all-progress-implied
This is used to imply --all-progress whenever progress
display is activated. Unlike --all-progress this flag doesn't
actually force any progress display by itself.
--version=<version>
Specify the bundle version. Version 2 is the older format and
can only be used with SHA-1 repositories; the newer version 3
contains capabilities that permit extensions. The default is
the oldest supported format, based on the hash algorithm in
use.
-q, --quiet
This flag makes the command not to report its progress on the
standard error stream.
SPECIFYING REFERENCES
Revisions must accompanied by reference names to be packaged in a
bundle.
More than one reference may be packaged, and more than one set of
prerequisite objects can be specified. The objects packaged are
those not contained in the union of the prerequisites.
The git bundle create command resolves the reference names for
you using the same rules as git rev-parse --abbrev-ref=loose
.
Each prerequisite can be specified explicitly (e.g. ^master~10
),
or implicitly (e.g. master~10..master
, --since=10.days.ago
master
).
All of these simple cases are OK (assuming we have a "master" and
"next" branch):
$ git bundle create master.bundle master
$ echo master | git bundle create master.bundle --stdin
$ git bundle create master-and-next.bundle master next
$ (echo master; echo next) | git bundle create master-and-next.bundle --stdin
And so are these (and the same but omitted --stdin
examples):
$ git bundle create recent-master.bundle master~10..master
$ git bundle create recent-updates.bundle master~10..master next~5..next
A revision name or a range whose right-hand-side cannot be
resolved to a reference is not accepted:
$ git bundle create HEAD.bundle $(git rev-parse HEAD)
fatal: Refusing to create empty bundle.
$ git bundle create master-yesterday.bundle master~10..master~5
fatal: Refusing to create empty bundle.
OBJECT PREREQUISITES
When creating bundles it is possible to create a self-contained
bundle that can be unbundled in a repository with no common
history, as well as providing negative revisions to exclude
objects needed in the earlier parts of the history.
Feeding a revision such as new
to git bundle create
will create a
bundle file that contains all the objects reachable from the
revision new
. That bundle can be unbundled in any repository to
obtain a full history that leads to the revision new
:
$ git bundle create full.bundle new
A revision range such as old..new
will produce a bundle file that
will require the revision old
(and any objects reachable from it)
to exist for the bundle to be "unbundle"-able:
$ git bundle create full.bundle old..new
A self-contained bundle without any prerequisites can be
extracted into anywhere, even into an empty repository, or be
cloned from (i.e., new
, but not old..new
).
It is okay to err on the side of caution, causing the bundle file
to contain objects already in the destination, as these are
ignored when unpacking at the destination.
If you want to match git clone --mirror
, which would include your
refs such as refs/remotes/*
, use --all
. If you want to provide
the same set of refs that a clone directly from the source
repository would get, use --branches --tags
for the
<git-rev-list-args>
.
The git bundle verify command can be used to check whether your
recipient repository has the required prerequisite commits for a
bundle.
Примеры (Examples)
Assume you want to transfer the history from a repository R1 on
machine A to another repository R2 on machine B. For whatever
reason, direct connection between A and B is not allowed, but we
can move data from A to B via some mechanism (CD, email, etc.).
We want to update R2 with development made on the branch master
in R1.
To bootstrap the process, you can first create a bundle that does
not have any prerequisites. You can use a tag to remember up to
what commit you last processed, in order to make it easy to later
update the other repository with an incremental bundle:
machineA$ cd R1
machineA$ git bundle create file.bundle master
machineA$ git tag -f lastR2bundle master
Then you transfer file.bundle to the target machine B. Because
this bundle does not require any existing object to be extracted,
you can create a new repository on machine B by cloning from it:
machineB$ git clone -b master /home/me/tmp/file.bundle R2
This will define a remote called "origin" in the resulting
repository that lets you fetch and pull from the bundle. The
$GIT_DIR/config file in R2 will have an entry like this:
[remote "origin"]
url = /home/me/tmp/file.bundle
fetch = refs/heads/*:refs/remotes/origin/*
To update the resulting mine.git repository, you can fetch or
pull after replacing the bundle stored at
/home/me/tmp/file.bundle with incremental updates.
After working some more in the original repository, you can
create an incremental bundle to update the other repository:
machineA$ cd R1
machineA$ git bundle create file.bundle lastR2bundle..master
machineA$ git tag -f lastR2bundle master
You then transfer the bundle to the other machine to replace
/home/me/tmp/file.bundle, and pull from it.
machineB$ cd R2
machineB$ git pull
If you know up to what commit the intended recipient repository
should have the necessary objects, you can use that knowledge to
specify the prerequisites, giving a cut-off point to limit the
revisions and objects that go in the resulting bundle. The
previous example used the lastR2bundle tag for this purpose, but
you can use any other options that you would give to the
git-log(1) command. Here are more examples:
You can use a tag that is present in both:
$ git bundle create mybundle v1.0.0..master
You can use a prerequisite based on time:
$ git bundle create mybundle --since=10.days master
You can use the number of commits:
$ git bundle create mybundle -10 master
You can run git-bundle verify
to see if you can extract from a
bundle that was created with a prerequisite:
$ git bundle verify mybundle
This will list what commits you must have in order to extract
from the bundle and will error out if you do not have them.
A bundle from a recipient repository's point of view is just like
a regular repository which it fetches or pulls from. You can, for
example, map references when fetching:
$ git fetch mybundle master:localRef
You can also see what references it offers:
$ git ls-remote mybundle
Примечание (Note)
1. the bundle-format
documentation
file:///usr/local/share/doc/git/technical/bundle-format.html
2. the pack format documentation
file:///usr/local/share/doc/git/technical/pack-format.html