найдите как можно более хороших общих предков для слияния (Find as good common ancestors as possible for a merge)
Имя (Name)
git-merge-base - Find as good common ancestors as possible for a
merge
Синопсис (Synopsis)
git merge-base [-a|--all] <commit> <commit>...
git merge-base [-a|--all] --octopus <commit>...
git merge-base --is-ancestor <commit> <commit>
git merge-base --independent <commit>...
git merge-base --fork-point <ref> [<commit>]
Описание (Description)
git merge-base finds best common ancestor(s) between two commits
to use in a three-way merge. One common ancestor is better than
another common ancestor if the latter is an ancestor of the
former. A common ancestor that does not have any better common
ancestor is a best common ancestor, i.e. a merge base. Note that
there can be more than one merge base for a pair of commits.
OPERATION MODES
As the most common special case, specifying only two commits on
the command line means computing the merge base between the given
two commits.
More generally, among the two commits to compute the merge base
from, one is specified by the first commit argument on the
command line; the other commit is a (possibly hypothetical)
commit that is a merge across all the remaining commits on the
command line.
As a consequence, the merge base is not necessarily contained in
each of the commit arguments if more than two commits are
specified. This is different from git-show-branch(1) when used
with the --merge-base
option.
--octopus
Compute the best common ancestors of all supplied commits, in
preparation for an n-way merge. This mimics the behavior of
git show-branch --merge-base.
--independent
Instead of printing merge bases, print a minimal subset of
the supplied commits with the same ancestors. In other words,
among the commits given, list those which cannot be reached
from any other. This mimics the behavior of git show-branch
--independent.
--is-ancestor
Check if the first <commit> is an ancestor of the second
<commit>, and exit with status 0 if true, or with status 1 if
not. Errors are signaled by a non-zero status that is not 1.
--fork-point
Find the point at which a branch (or any history that leads
to <commit>) forked from another branch (or any reference)
<ref>. This does not just look for the common ancestor of the
two commits, but also takes into account the reflog of <ref>
to see if the history leading to <commit> forked from an
earlier incarnation of the branch <ref> (see discussion on
this mode below).
Параметры (Options)
-a, --all
Output all merge bases for the commits, instead of just one.
Обсуждение (Discussion)
Given two commits A and B, git merge-base A B
will output a
commit which is reachable from both A and B through the parent
relationship.
For example, with this topology:
o---o---o---B
/
---o---1---o---o---o---A
the merge base between A and B is 1.
Given three commits A, B and C, git merge-base A B C
will compute
the merge base between A and a hypothetical commit M, which is a
merge between B and C. For example, with this topology:
o---o---o---o---C
/
/ o---o---o---B
/ /
---2---1---o---o---o---A
the result of git merge-base A B C
is 1. This is because the
equivalent topology with a merge commit M between B and C is:
o---o---o---o---o
/ \
/ o---o---o---o---M
/ /
---2---1---o---o---o---A
and the result of git merge-base A M
is 1. Commit 2 is also a
common ancestor between A and M, but 1 is a better common
ancestor, because 2 is an ancestor of 1. Hence, 2 is not a merge
base.
The result of git merge-base --octopus A B C
is 2, because 2 is
the best common ancestor of all commits.
When the history involves criss-cross merges, there can be more
than one best common ancestor for two commits. For example, with
this topology:
---1---o---A
\ /
X
/ \
---2---o---o---B
both 1 and 2 are merge-bases of A and B. Neither one is better
than the other (both are best merge bases). When the --all
option
is not given, it is unspecified which best one is output.
A common idiom to check "fast-forward-ness" between two commits A
and B is (or at least used to be) to compute the merge base
between A and B, and check if it is the same as A, in which case,
A is an ancestor of B. You will see this idiom used often in
older scripts.
A=$(git rev-parse --verify A)
if test "$A" = "$(git merge-base A B)"
then
... A is an ancestor of B ...
fi
In modern git, you can say this in a more direct way:
if git merge-base --is-ancestor A B
then
... A is an ancestor of B ...
fi
instead.
DISCUSSION ON FORK-POINT MODE
After working on the topic
branch created with git switch -c
topic origin/master
, the history of remote-tracking branch
origin/master
may have been rewound and rebuilt, leading to a
history of this shape:
o---B2
/
---o---o---B1--o---o---o---B (origin/master)
\
B0
\
D0---D1---D (topic)
where origin/master
used to point at commits B0, B1, B2 and now
it points at B, and your topic
branch was started on top of it
back when origin/master
was at B0, and you built three commits,
D0, D1, and D, on top of it. Imagine that you now want to rebase
the work you did on the topic on top of the updated
origin/master.
In such a case, git merge-base origin/master topic
would return
the parent of B0 in the above picture, but B0^..D is not
the
range of commits you would want to replay on top of B (it
includes B0, which is not what you wrote; it is a commit the
other side discarded when it moved its tip from B0 to B1).
git merge-base --fork-point origin/master topic
is designed to
help in such a case. It takes not only B but also B0, B1, and B2
(i.e. old tips of the remote-tracking branches your repository's
reflog knows about) into account to see on which commit your
topic branch was built and finds B0, allowing you to replay only
the commits on your topic, excluding the commits the other side
later discarded.
Hence
$ fork_point=$(git merge-base --fork-point origin/master topic)
will find B0, and
$ git rebase --onto origin/master $fork_point topic
will replay D0, D1 and D on top of B to create a new history of
this shape:
o---B2
/
---o---o---B1--o---o---o---B (origin/master)
\ \
B0 D0'--D1'--D' (topic - updated)
\
D0---D1---D (topic - old)
A caveat is that older reflog entries in your repository may be
expired by git gc
. If B0 no longer appears in the reflog of the
remote-tracking branch origin/master
, the --fork-point
mode
obviously cannot find it and fails, avoiding to give a random and
useless result (such as the parent of B0, like the same command
without the --fork-point
option gives).
Also, the remote-tracking branch you use the --fork-point
mode
with must be the one your topic forked from its tip. If you
forked from an older commit than the tip, this mode would not
find the fork point (imagine in the above sample history B0 did
not exist, origin/master started at B1, moved to B2 and then B,
and you forked your topic at origin/master^ when origin/master
was B1; the shape of the history would be the same as above,
without B0, and the parent of B1 is what git merge-base
origin/master topic
correctly finds, but the --fork-point
mode
will not, because it is not one of the commits that used to be at
the tip of origin/master).
Смотри также (See also)
git-rev-list(1), git-show-branch(1), git-merge(1)