Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   perf-intel-pt    ( 1 )

поддержка Intel Processor Trace в инструментах perf (Support for Intel Processor Trace within perf tools)

PERF RECORD

new event
       The Intel PT kernel driver creates a new PMU for Intel PT. PMU
       events are selected by providing the PMU name followed by the
       "config" separated by slashes. An enhancement has been made to
       allow default "config" e.g. the option

-e intel_pt//

will use a default config value. Currently that is the same as

-e intel_pt/tsc,noretcomp=0/

which is the same as

-e intel_pt/tsc=1,noretcomp=0/

Note there are now new config terms - see section config terms further below.

The config terms are listed in /sys/devices/intel_pt/format. They are bit fields within the config member of the struct perf_event_attr which is passed to the kernel by the perf_event_open system call. They correspond to bit fields in the IA32_RTIT_CTL MSR. Here is a list of them and their definitions:

$ grep -H . /sys/bus/event_source/devices/intel_pt/format/* /sys/bus/event_source/devices/intel_pt/format/cyc:config:1 /sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22 /sys/bus/event_source/devices/intel_pt/format/mtc:config:9 /sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17 /sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11 /sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27 /sys/bus/event_source/devices/intel_pt/format/tsc:config:10

Note that the default config must be overridden for each term i.e.

-e intel_pt/noretcomp=0/

is the same as:

-e intel_pt/tsc=1,noretcomp=0/

So, to disable TSC packets use:

-e intel_pt/tsc=0/

It is also possible to specify the config value explicitly:

-e intel_pt/config=0x400/

Note that, as with all events, the event is suffixed with event modifiers:

u userspace k kernel h hypervisor G guest H host p precise ip

h, G and H are for virtualization which is not supported by Intel PT. p is also not relevant to Intel PT. So only options u and k are meaningful for Intel PT.

perf_event_attr is displayed if the -vv option is used e.g.

------------------------------------------------------------ perf_event_attr: type 6 size 112 config 0x400 { sample_period, sample_freq } 1 sample_type IP|TID|TIME|CPU|IDENTIFIER read_format ID disabled 1 inherit 1 exclude_kernel 1 exclude_hv 1 enable_on_exec 1 sample_id_all 1 ------------------------------------------------------------ sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 ------------------------------------------------------------

config terms The June 2015 version of Intel 64 and IA-32 Architectures Software Developer Manuals, Chapter 36 Intel Processor Trace, defined new Intel PT features. Some of the features are reflect in new config terms. All the config terms are described below.

tsc Always supported. Produces TSC timestamp packets to provide timing information. In some cases it is possible to decode without timing information, for example a per-thread context that does not overlap executable memory maps.

The default config selects tsc (i.e. tsc=1).

noretcomp Always supported. Disables "return compression" so a TIP packet is produced when a function returns. Causes more packets to be produced but might make decoding more reliable.

The default config does not select noretcomp (i.e. noretcomp=0).

psb_period Allows the frequency of PSB packets to be specified.

The PSB packet is a synchronization packet that provides a starting point for decoding or recovery from errors.

Support for psb_period is indicated by:

/sys/bus/event_source/devices/intel_pt/caps/psb_cyc

which contains "1" if the feature is supported and "0" otherwise.

Valid values are given by:

/sys/bus/event_source/devices/intel_pt/caps/psb_periods

which contains a hexadecimal value, the bits of which represent valid values e.g. bit 2 set means value 2 is valid.

The psb_period value is converted to the approximate number of trace bytes between PSB packets as:

2 ^ (value + 11)

e.g. value 3 means 16KiB bytes between PSBs

If an invalid value is entered, the error message will give a list of valid values e.g.

$ perf record -e intel_pt/psb_period=15/u uname Invalid psb_period for intel_pt. Valid values are: 0-5

If MTC packets are selected, the default config selects a value of 3 (i.e. psb_period=3) or the nearest lower value that is supported (0 is always supported). Otherwise the default is 0.

If decoding is expected to be reliable and the buffer is large then a large PSB period can be used.

Because a TSC packet is produced with PSB, the PSB period can also affect the granularity to timing information in the absence of MTC or CYC.

mtc Produces MTC timing packets.

MTC packets provide finer grain timestamp information than TSC packets. MTC packets record time using the hardware crystal clock (CTC) which is related to TSC packets using a TMA packet.

Support for this feature is indicated by:

/sys/bus/event_source/devices/intel_pt/caps/mtc

which contains "1" if the feature is supported and "0" otherwise.

The frequency of MTC packets can also be specified - see mtc_period below.

mtc_period Specifies how frequently MTC packets are produced - see mtc above for how to determine if MTC packets are supported.

Valid values are given by:

/sys/bus/event_source/devices/intel_pt/caps/mtc_periods

which contains a hexadecimal value, the bits of which represent valid values e.g. bit 2 set means value 2 is valid.

The mtc_period value is converted to the MTC frequency as:

CTC-frequency / (2 ^ value)

e.g. value 3 means one eighth of CTC-frequency

Where CTC is the hardware crystal clock, the frequency of which can be related to TSC via values provided in cpuid leaf 0x15.

If an invalid value is entered, the error message will give a list of valid values e.g.

$ perf record -e intel_pt/mtc_period=15/u uname Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9

The default value is 3 or the nearest lower value that is supported (0 is always supported).

cyc Produces CYC timing packets.

CYC packets provide even finer grain timestamp information than MTC and TSC packets. A CYC packet contains the number of CPU cycles since the last CYC packet. Unlike MTC and TSC packets, CYC packets are only sent when another packet is also sent.

Support for this feature is indicated by:

/sys/bus/event_source/devices/intel_pt/caps/psb_cyc

which contains "1" if the feature is supported and "0" otherwise.

The number of CYC packets produced can be reduced by specifying a threshold - see cyc_thresh below.

cyc_thresh Specifies how frequently CYC packets are produced - see cyc above for how to determine if CYC packets are supported.

Valid cyc_thresh values are given by:

/sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds

which contains a hexadecimal value, the bits of which represent valid values e.g. bit 2 set means value 2 is valid.

The cyc_thresh value represents the minimum number of CPU cycles that must have passed before a CYC packet can be sent. The number of CPU cycles is:

2 ^ (value - 1)

e.g. value 4 means 8 CPU cycles must pass before a CYC packet can be sent. Note a CYC packet is still only sent when another packet is sent, not at, e.g. every 8 CPU cycles.

If an invalid value is entered, the error message will give a list of valid values e.g.

$ perf record -e intel_pt/cyc,cyc_thresh=15/u uname Invalid cyc_thresh for intel_pt. Valid values are: 0-12

CYC packets are not requested by default.

pt Specifies pass-through which enables the branch config term.

The default config selects 'pt' if it is available, so a user will never need to specify this term.

branch Enable branch tracing. Branch tracing is enabled by default so to disable branch tracing use branch=0.

The default config selects 'branch' if it is available.

ptw Enable PTWRITE packets which are produced when a ptwrite instruction is executed.

Support for this feature is indicated by:

/sys/bus/event_source/devices/intel_pt/caps/ptwrite

which contains "1" if the feature is supported and "0" otherwise.

fup_on_ptw Enable a FUP packet to follow the PTWRITE packet. The FUP packet provides the address of the ptwrite instruction. In the absence of fup_on_ptw, the decoder will use the address of the previous branch if branch tracing is enabled, otherwise the address will be zero. Note that fup_on_ptw will work even when branch tracing is disabled.

pwr_evt Enable power events. The power events provide information about changes to the CPU C-state.

Support for this feature is indicated by:

/sys/bus/event_source/devices/intel_pt/caps/power_event_trace

which contains "1" if the feature is supported and "0" otherwise.

AUX area sampling option To select Intel PT "sampling" the AUX area sampling option can be used:

--aux-sample

Optionally it can be followed by the sample size in bytes e.g.

--aux-sample=8192

In addition, the Intel PT event to sample must be defined e.g.

-e intel_pt//u

Samples on other events will be created containing Intel PT data e.g. the following will create Intel PT samples on the branch-misses event, note the events must be grouped using {}:

perf record --aux-sample -e '{intel_pt//u,branch-misses:u}'

An alternative to --aux-sample is to add the config term aux-sample-size to events. In this case, the grouping is implied e.g.

perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u

is the same as:

perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}'

but allows for also using an address filter e.g.:

perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls

It is important to select a sample size that is big enough to contain at least one PSB packet. If not a warning will be displayed:

Intel PT sample size (%zu) may be too small for PSB period (%zu)

The calculation used for that is: if sample_size ⟨ psb_period + 256 display the warning. When sampling is used, psb_period defaults to 0 (2KiB).

The default sample size is 4KiB.

The sample size is passed in aux_sample_size in struct perf_event_attr. The sample size is limited by the maximum event size which is 64KiB. It is difficult to know how big the event might be without the trace sample attached, but the tool validates that the sample size is not greater than 60KiB.

new snapshot option The difference between full trace and snapshot from the kernel's perspective is that in full trace we don't overwrite trace data that the user hasn't collected yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let the trace run and overwrite older data in the buffer so that whenever something interesting happens, we can stop it and grab a snapshot of what was going on around that interesting moment.

To select snapshot mode a new option has been added:

-S

Optionally it can be followed by the snapshot size e.g.

-S0x100000

The default snapshot size is the auxtrace mmap size. If neither auxtrace mmap size nor snapshot size is specified, then the default is 4MiB for privileged users (or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. If an unprivileged user does not specify mmap pages, the mmap pages will be reduced as described in the new auxtrace mmap size option section below.

The snapshot size is displayed if the option -vv is used e.g.

Intel PT snapshot size: %zu

new auxtrace mmap size option Intel PT buffer size is specified by an addition to the -m option e.g.

-m,16

selects a buffer size of 16 pages i.e. 64KiB.

Note that the existing functionality of -m is unchanged. The auxtrace mmap size is specified by the optional addition of a comma and the value.

The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users (or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. If an unprivileged user does not specify mmap pages, the mmap pages will be reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the user is likely to get an error as they exceed their mlock limit (Max locked memory as shown in /proc/self/limits). Note that perf does not count the first 512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus their mlock limit (which defaults to 64KiB but is not multiplied by the number of cpus).

In full-trace mode, powers of two are allowed for buffer size, with a minimum size of 2 pages. In snapshot mode or sampling mode, it is the same but the minimum size is 1 page.

The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g.

mmap length 528384 auxtrace mmap length 4198400

Intel PT modes of operation Intel PT can be used in 3 modes: full-trace mode sample mode snapshot mode

Full-trace mode traces continuously e.g.

perf record -e intel_pt//u uname

Sample mode attaches a Intel PT sample to other events e.g.

perf record --aux-sample -e intel_pt//u -e branch-misses:u

Snapshot mode captures the available data when a signal is sent or "snapshot" control command is issued. e.g. using a signal

perf record -v -e intel_pt//u -S ./loopy 1000000000 & [1] 11435 kill -USR2 11435 Recording AUX area tracing snapshot

Note that the signal sent is SIGUSR2. Note that "Recording AUX area tracing snapshot" is displayed because the -v option is used.

The advantage of using "snapshot" control command is that the access is controlled by access to a FIFO e.g.

$ mkfifo perf.control $ mkfifo perf.ack $ cat perf.ack & [1] 15235 $ sudo ~/bin/perf record --control fifo:perf.control,perf.ack -S -e intel_pt//u -- sleep 60 & [2] 15243 $ ps -e | grep perf 15244 pts/1 00:00:00 perf $ kill -USR2 15244 bash: kill: (15244) - Operation not permitted $ echo snapshot > perf.control ack

The 3 Intel PT modes of operation cannot be used together.

Buffer handling There may be buffer limitations (i.e. single ToPa entry) which means that actual buffer sizes are limited to powers of 2 up to 4MiB (MAX_ORDER). In order to provide other sizes, and in particular an arbitrarily large size, multiple buffers are logically concatenated. However an interrupt must be used to switch between buffers. That has two potential problems: a) the interrupt may not be handled in time so that the current buffer becomes full and some trace data is lost. b) the interrupts may slow the system and affect the performance results.

If trace data is lost, the driver sets truncated in the PERF_RECORD_AUX event which the tools report as an error.

In full-trace mode, the driver waits for data to be copied out before allowing the (logical) buffer to wrap-around. If data is not copied out quickly enough, again truncated is set in the PERF_RECORD_AUX event. If the driver has to wait, the intel_pt event gets disabled. Because it is difficult to know when that happens, perf tools always re-enable the intel_pt event after copying out data.

Intel PT and build ids By default "perf record" post-processes the event stream to find all build ids for executables for all addresses sampled. Deliberately, Intel PT is not decoded for that purpose (it would take too long). Instead the build ids for all executables encountered (due to mmap, comm or task events) are included in the perf.data file.

To see buildids included in the perf.data file use the command:

perf buildid-list

If the perf.data file contains Intel PT data, that is the same as:

perf buildid-list --with-hits

Snapshot mode and event disabling In order to make a snapshot, the intel_pt event is disabled using an IOCTL, namely PERF_EVENT_IOC_DISABLE. However doing that can also disable the collection of side-band information. In order to prevent that, a dummy software event has been introduced that permits tracking events (like mmaps) to continue to be recorded while intel_pt is disabled. That is important to ensure there is complete side-band information to allow the decoding of subsequent snapshots.

A test has been created for that. To find the test:

perf test list ... 23: Test using a dummy software event to keep tracking

To run the test:

perf test 23 23: Test using a dummy software event to keep tracking : Ok

perf record modes (nothing new here) perf record essentially operates in one of three modes: per thread per cpu workload only

"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a workload). "per cpu" is selected by -C or -a. "workload only" mode is selected by not using the other options but providing a command to run (i.e. the workload).

In per-thread mode an exact list of threads is traced. There is no inheritance. Each thread has its own event buffer.

In per-cpu mode all processes (or processes from the selected cgroup i.e. -G option, or processes selected with -p or -u) are traced. Each cpu has its own buffer. Inheritance is allowed.

In workload-only mode, the workload is traced but with per-cpu buffers. Inheritance is allowed. Note that you can now trace a workload in per-thread mode by using the --per-thread option.

Privileged vs non-privileged users Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users have memory limits imposed upon them. That affects what buffer sizes they can have as outlined above.

The v4.2 kernel introduced support for a context switch metadata event, PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes are scheduled out and in, just not by whom, which is left for the PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context, which in turn requires CAP_PERFMON or CAP_SYS_ADMIN.

Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context switches") commit, that introduces these metadata events for further info.

When working with kernels < v4.2, the following considerations must be taken, as the sched:sched_switch tracepoints will be used to receive such information:

Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are not permitted to use tracepoints which means there is insufficient side-band information to decode Intel PT in per-cpu mode, and potentially workload-only mode too if the workload creates new processes.

Note also, that to use tracepoints, read-access to debugfs is required. So if debugfs is not mounted or the user does not have read-access, it will again not be possible to decode Intel PT in per-cpu mode.

sched_switch tracepoint The sched_switch tracepoint is used to provide side-band data for Intel PT decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't available.

The sched_switch events are automatically added. e.g. the second event shown below:

$ perf record -vv -e intel_pt//u uname ------------------------------------------------------------ perf_event_attr: type 6 size 112 config 0x400 { sample_period, sample_freq } 1 sample_type IP|TID|TIME|CPU|IDENTIFIER read_format ID disabled 1 inherit 1 exclude_kernel 1 exclude_hv 1 enable_on_exec 1 sample_id_all 1 ------------------------------------------------------------ sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 ------------------------------------------------------------ perf_event_attr: type 2 size 112 config 0x108 { sample_period, sample_freq } 1 sample_type IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER read_format ID inherit 1 sample_id_all 1 exclude_guest 1 ------------------------------------------------------------ sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8 sys_perf_event_open: pid -1 cpu 1 group_fd -1 flags 0x8 sys_perf_event_open: pid -1 cpu 2 group_fd -1 flags 0x8 sys_perf_event_open: pid -1 cpu 3 group_fd -1 flags 0x8 ------------------------------------------------------------ perf_event_attr: type 1 size 112 config 0x9 { sample_period, sample_freq } 1 sample_type IP|TID|TIME|IDENTIFIER read_format ID disabled 1 inherit 1 exclude_kernel 1 exclude_hv 1 mmap 1 comm 1 enable_on_exec 1 task 1 sample_id_all 1 mmap2 1 comm_exec 1 ------------------------------------------------------------ sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 mmap size 528384B AUX area mmap length 4194304 perf event ring buffer mmapped per cpu Synthesizing auxtrace information Linux [ perf record: Woken up 1 times to write data ] [ perf record: Captured and wrote 0.042 MB perf.data ]

Note, the sched_switch event is only added if the user is permitted to use it and only in per-cpu mode.

Note also, the sched_switch event is only added if TSC packets are requested. That is because, in the absence of timing information, the sched_switch events cannot be matched against the Intel PT trace.