Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   org.freedesktop.login1    ( 5 )

интерфейс D-Bus системы d-logind (The D-Bus interface of systemd-logind)

  Name  |  Introduction  |    The manager object    |  Seat objects  |  User objects  |  Session objects  |  Examples  |  Versions  |  Note  |

Объект менеджера (The manager object)

The service exposes the following interfaces on the Manager
       object on the bus:

node /org/freedesktop/login1 { interface org.freedesktop.login1.Manager { methods: GetSession(in s session_id, out o object_path); GetSessionByPID(in u pid, out o object_path); GetUser(in u uid, out o object_path); GetUserByPID(in u pid, out o object_path); GetSeat(in s seat_id, out o object_path); ListSessions(out a(susso) sessions); ListUsers(out a(uso) users); ListSeats(out a(so) seats); ListInhibitors(out a(ssssuu) inhibitors); CreateSession(in u uid, in u pid, in s service, in s type, in s class, in s desktop, in s seat_id, in u vtnr, in s tty, in s display, in b remote, in s remote_user, in s remote_host, in a(sv) properties, out s session_id, out o object_path, out s runtime_path, out h fifo_fd, out u uid, out s seat_id, out u vtnr, out b existing); ReleaseSession(in s session_id); ActivateSession(in s session_id); ActivateSessionOnSeat(in s session_id, in s seat_id); LockSession(in s session_id); UnlockSession(in s session_id); LockSessions(); UnlockSessions(); KillSession(in s session_id, in s who, in i signal_number); KillUser(in u uid, in i signal_number); TerminateSession(in s session_id); TerminateUser(in u uid); TerminateSeat(in s seat_id); SetUserLinger(in u uid, in b enable, in b interactive); AttachDevice(in s seat_id, in s sysfs_path, in b interactive); FlushDevices(in b interactive); PowerOff(in b interactive); PowerOffWithFlags(in t flags); Reboot(in b interactive); RebootWithFlags(in t flags); Halt(in b interactive); HaltWithFlags(in t flags); Suspend(in b interactive); SuspendWithFlags(in t flags); Hibernate(in b interactive); HibernateWithFlags(in t flags); HybridSleep(in b interactive); HybridSleepWithFlags(in t flags); SuspendThenHibernate(in b interactive); SuspendThenHibernateWithFlags(in t flags); CanPowerOff(out s result); CanReboot(out s result); CanHalt(out s result); CanSuspend(out s result); CanHibernate(out s result); CanHybridSleep(out s result); CanSuspendThenHibernate(out s result); ScheduleShutdown(in s type, in t usec); CancelScheduledShutdown(out b cancelled); Inhibit(in s what, in s who, in s why, in s mode, out h pipe_fd); CanRebootParameter(out s result); SetRebootParameter(in s parameter); CanRebootToFirmwareSetup(out s result); SetRebootToFirmwareSetup(in b enable); CanRebootToBootLoaderMenu(out s result); SetRebootToBootLoaderMenu(in t timeout); CanRebootToBootLoaderEntry(out s result); SetRebootToBootLoaderEntry(in s boot_loader_entry); SetWallMessage(in s wall_message, in b enable); signals: SessionNew(s session_id, o object_path); SessionRemoved(s session_id, o object_path); UserNew(u uid, o object_path); UserRemoved(u uid, o object_path); SeatNew(s seat_id, o object_path); SeatRemoved(s seat_id, o object_path); PrepareForShutdown(b start); PrepareForSleep(b start); properties: @org.freedesktop.DBus.Property.EmitsChangedSignal("false") @org.freedesktop.systemd1.Privileged("true") readwrite b EnableWallMessages = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") @org.freedesktop.systemd1.Privileged("true") readwrite s WallMessage = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly u NAutoVTs = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly as KillOnlyUsers = ['...', ...]; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly as KillExcludeUsers = ['...', ...]; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly b KillUserProcesses = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly s RebootParameter = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly b RebootToFirmwareSetup = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly t RebootToBootLoaderMenu = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly s RebootToBootLoaderEntry = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly as BootLoaderEntries = ['...', ...]; readonly b IdleHint = ...; readonly t IdleSinceHint = ...; readonly t IdleSinceHintMonotonic = ...; readonly s BlockInhibited = '...'; readonly s DelayInhibited = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t InhibitDelayMaxUSec = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t UserStopDelayUSec = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s HandlePowerKey = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s HandleSuspendKey = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s HandleHibernateKey = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s HandleLidSwitch = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s HandleLidSwitchExternalPower = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s HandleLidSwitchDocked = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t HoldoffTimeoutUSec = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly s IdleAction = '...'; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t IdleActionUSec = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly b PreparingForShutdown = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly b PreparingForSleep = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly (st) ScheduledShutdown = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly b Docked = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly b LidClosed = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly b OnExternalPower = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly b RemoveIPC = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t RuntimeDirectorySize = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t RuntimeDirectoryInodesMax = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t InhibitorsMax = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly t NCurrentInhibitors = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("const") readonly t SessionsMax = ...; @org.freedesktop.DBus.Property.EmitsChangedSignal("false") readonly t NCurrentSessions = ...; }; interface org.freedesktop.DBus.Peer { ... }; interface org.freedesktop.DBus.Introspectable { ... }; interface org.freedesktop.DBus.Properties { ... }; };

Methods GetSession() may be used to get the session object path for the session with the specified ID. Similarly, GetUser() and GetSeat() get the user and seat objects, respectively. GetSessionByPID() and GetUserByPID() get the session/user object the specified PID belongs to if there is any.

ListSessions() returns an array of all current sessions. The structures in the array consist of the following fields: session id, user id, user name, seat id, session object path. If a session does not have a seat attached, the seat id field will be an empty string.

ListUsers() returns an array of all currently logged in users. The structures in the array consist of the following fields: user id, user name, user object path.

ListSeats() returns an array of all currently available seats. The structure in the array consists of the following fields: seat id, seat object path.

ListInhibitors() lists all currently active inhibitors. It returns an array of structures consisting of what, who, why, mode, uid (user ID), and pid (process ID).

CreateSession() and ReleaseSession() may be used to open or close login sessions. These calls should never be invoked directly by clients. Creating/closing sessions is exclusively the job of PAM and its pam_systemd(8) module.

ActivateSession() brings the session with the specified ID into the foreground. ActivateSessionOnSeat() does the same, but only if the seat id matches.

LockSession() asks the session with the specified ID to activate the screen lock. UnlockSession() asks the session with the specified ID to remove an active screen lock, if there is any. This is implemented by sending out the Lock() and Unlock() signals from the respective session object which session managers are supposed to listen on.

LockSessions() asks all sessions to activate their screen locks. This may be used to lock access to the entire machine in one action. Similarly, UnlockSessions() asks all sessions to deactivate their screen locks.

KillSession() may be used to send a Unix signal to one or all processes of a session. As arguments it takes the session id, either the string "leader" or "all" and a signal number. If "leader" is passed only the session "leader" is killed. If "all" is passed all processes of the session are killed.

KillUser() may be used to send a Unix signal to all processes of a user. As arguments it takes the user id and a signal number.

TerminateSession(), TerminateUser(), TerminateSeat() may be used to forcibly terminate one specific session, all processes of a user, and all sessions attached to a specific seat, respectively. The session, user, and seat are identified by their respective IDs.

SetUserLinger() enables or disables user lingering. If enabled, the runtime directory of a user is kept around and they may continue to run processes while logged out. If disabled, the runtime directory goes away as soon as they log out. SetUserLinger() expects three arguments: the UID, a boolean whether to enable/disable and a boolean controlling the polkit[1] authorization interactivity (see below). Note that the user linger state is persistently stored on disk.

AttachDevice() may be used to assign a specific device to a specific seat. The device is identified by its /sys/ path and must be eligible for seat assignments. AttachDevice() takes three arguments: the seat id, the sysfs path, and a boolean for controlling polkit interactivity (see below). Device assignments are persistently stored on disk. To create a new seat, simply specify a previously unused seat id. For more information about the seat assignment logic see sd-login(3).

FlushDevices() removes all explicit seat assignments for devices, resetting all assignments to the automatic defaults. The only argument it takes is the polkit interactivity boolean (see below).

PowerOff(), Reboot(), Halt(), Suspend(), and Hibernate() result in the system being powered off, rebooted, halted (shut down without turning off power), suspended (the system state is saved to RAM and the CPU is turned off), or hibernated (the system state is saved to disk and the machine is powered down). HybridSleep() results in the system entering a hybrid-sleep mode, i.e. the system is both hibernated and suspended. SuspendThenHibernate() results in the system being suspended, then later woken using an RTC timer and hibernated. The only argument is the polkit interactivity boolean interactive (see below). The main purpose of these calls is that they enforce polkit policy and hence allow powering off/rebooting/suspending/hibernating even by unprivileged users. They also enforce inhibition locks for non-privileged users. UIs should expose these calls as the primary mechanism to poweroff/reboot/suspend/hibernate the machine. Methods PowerOffWithFlags(), RebootWithFlags(), HaltWithFlags(), SuspendWithFlags(), HibernateWithFlags(), HybridSleepWithFlags() and SuspendThenHibernateWithFlags() add flags to allow for extendability, defined as follows:

#define SD_LOGIND_ROOT_CHECK_INHIBITORS (UINT64_C(1) << 0) #define SD_LOGIND_KEXEC_REBOOT (UINT64_C(1) << 1)

When the flags is 0 then these methods behave just like the versions without flags. When SD_LOGIND_ROOT_CHECK_INHIBITORS (0x01) is set, active inhibitors are honoured for privileged users too. When SD_LOGIND_KEXEC_REBOOT (0x02) is set, then RebootWithFlags() perform kexec reboot if kexec kernel is loaded.

SetRebootParameter() sets a parameter for a subsequent reboot operation. See the description of reboot in systemctl(1) and reboot(2) for more information.

SetRebootToFirmwareSetup(), SetRebootToBootLoaderMenu(), and SetRebootToBootLoaderEntry() configure the action to be taken from the boot loader after a reboot: respectively entering firmware setup mode, the boot loader menu, or a specific boot loader entry. See systemctl(1) for the corresponding command line interface.

CanPowerOff(), CanReboot(), CanHalt(), CanSuspend(), CanHibernate(), CanHybridSleep(), CanSuspendThenHibernate(), CanRebootParameter(), CanRebootToFirmwareSetup(), CanRebootToBootLoaderMenu(), and CanRebootToBootLoaderEntry() test whether the system supports the respective operation and whether the calling user is allowed to execute it. Returns one of "na", "yes", "no", and "challenge". If "na" is returned, the operation is not available because hardware, kernel, or drivers do not support it. If "yes" is returned, the operation is supported and the user may execute the operation without further authentication. If "no" is returned, the operation is available but the user is not allowed to execute the operation. If "challenge" is returned, the operation is available but only after authorization.

ScheduleShutdown() schedules a shutdown operation type at time usec in microseconds since the UNIX epoch. type can be one of "poweroff", "dry-poweroff", "reboot", "dry-reboot", "halt", and "dry-halt". (The "dry-" variants do not actually execute the shutdown action.) CancelScheduledShutdown() cancels a scheduled shutdown. The output parameter cancelled is true if a shutdown operation was scheduled.

SetWallMessage() sets the wall message (the message that will be sent out to all terminals and stored in a utmp(5) record) for a subsequent scheduled shutdown operation. The parameter wall_message specifies the shutdown reason (and may be empty) which will be included in the shutdown message. The parameter enable specifies whether to print a wall message on shutdown.

Inhibit() creates an inhibition lock. It takes four parameters: what, who, why, and mode. what is one or more of "shutdown", "sleep", "idle", "handle-power-key", "handle-suspend-key", "handle-hibernate-key", "handle-lid-switch", separated by colons, for inhibiting poweroff/reboot, suspend/hibernate, the automatic idle logic, or hardware key handling. who should be a short human readable string identifying the application taking the lock. why should be a short human readable string identifying the reason why the lock is taken. Finally, mode is either "block" or "delay" which encodes whether the inhibit shall be consider mandatory or whether it should just delay the operation to a certain maximum time. The method returns a file descriptor. The lock is released the moment this file descriptor and all its duplicates are closed. For more information on the inhibition logic see Inhibitor Locks[2].

Signals Whenever the inhibition state or idle hint changes, PropertyChanged signals are sent out to which clients can subscribe.

The SessionNew, SessionRemoved, UserNew, UserRemoved, SeatNew, and SeatRemoved signals are sent each time a session is created or removed, a user logs in or out, or a seat is added or removed. They each contain the ID of the object plus the object path.

The PrepareForShutdown() and PrepareForSleep() signals are sent right before (with the argument "true") or after (with the argument "false") the system goes down for reboot/poweroff and suspend/hibernate, respectively. This may be used by applications to save data on disk, release memory, or do other jobs that should be done shortly before shutdown/sleep, in conjunction with delay inhibitor locks. After completion of this work they should release their inhibition locks in order to not delay the operation any further. For more information see Inhibitor Locks[2].

Properties Most properties simply reflect the configuration, see logind.conf(5). This includes: NAutoVTs, KillOnlyUsers, KillExcludeUsers, KillUserProcesses, IdleAction, InhibitDelayMaxUSec, InhibitorsMax, UserStopDelayUSec, HandlePowerKey, HandleSuspendKey, HandleHibernateKey, HandleLidSwitch, HandleLidSwitchExternalPower, HandleLidSwitchDocked, IdleActionUSec, HoldoffTimeoutUSec, RemoveIPC, RuntimeDirectorySize, RuntimeDirectoryInodesMax, InhibitorsMax, and SessionsMax.

The IdleHint property reflects the idle hint state of the system. If the system is idle it might get into automatic suspend or shutdown depending on the configuration.

IdleSinceHint and IdleSinceHintMonotonic encode the timestamps of the last change of the idle hint boolean, in CLOCK_REALTIME and CLOCK_MONOTONIC timestamps, respectively, in microseconds since the epoch.

The BlockInhibited and DelayInhibited properties encode the currently active locks of the respective modes. They are colon separated lists of "shutdown", "sleep", and "idle" (see above).

NCurrentSessions and NCurrentInhibitors contain the number of currently registered sessions and inhibitors.

The BootLoaderEntries property contains a list of boot loader entries. This includes boot loader entries defined in configuration and any additional loader entries reported by the boot loader. See systemd-boot(7) for more information.

The PreparingForShutdown and PreparingForSleep boolean properties are true during the interval between the two PrepareForShutdown and PrepareForSleep signals respectively. Note that these properties do not send out PropertyChanged signals.

The RebootParameter property shows the value set with the SetRebootParameter() method described above.

ScheduledShutdown shows the value pair set with the ScheduleShutdown() method described above.

RebootToFirmwareSetup, RebootToBootLoaderMenu, and RebootToBootLoaderEntry are true when the resprective post-reboot operation was selected with SetRebootToFirmwareSetup, SetRebootToBootLoaderMenu, or SetRebootToBootLoaderEntry.

The WallMessage and EnableWallMessages properties reflect the shutdown reason and wall message enablement switch which can be set with the SetWallMessage() method described above.

Docked is true if the machine is connected to a dock. LidClosed is true when the lid (of a laptop) is closed. OnExternalPower is true when the machine is connected to an external power supply.

Security A number of operations are protected via the polkit privilege system. SetUserLinger() requires the org.freedesktop.login1.set-user-linger privilege. AttachDevice() requires org.freedesktop.login1.attach-device and FlushDevices() requires org.freedesktop.login1.flush-devices. PowerOff(), Reboot(), Halt(), Suspend(), Hibernate() require org.freedesktop.login1.power-off, org.freedesktop.login1.power-off-multiple-sessions, org.freedesktop.login1.power-off-ignore-inhibit, org.freedesktop.login1.reboot, org.freedesktop.login1.reboot-multiple-sessions, org.freedesktop.login1.reboot-ignore-inhibit, org.freedesktop.login1.halt, org.freedesktop.login1.halt-multiple-sessions, org.freedesktop.login1.halt-ignore-inhibit, org.freedesktop.login1.suspend, org.freedesktop.login1.suspend-multiple-sessions, org.freedesktop.login1.suspend-ignore-inhibit, org.freedesktop.login1.hibernate, org.freedesktop.login1.hibernate-multiple-sessions, org.freedesktop.login1.hibernate-ignore-inhibit, respectively depending on whether there are other sessions around or active inhibits are present. HybridSleep() and SuspendThenHibernate() use the same privileges as Hibernate(). SetRebootParameter() requires org.freedesktop.login1.set-reboot-parameter.

SetRebootToFirmwareSetup requires org.freedesktop.login1.set-reboot-to-firmware-setup. SetRebootToBootLoaderMenu requires org.freedesktop.login1.set-reboot-to-boot-loader-menu. SetRebootToBootLoaderEntry requires org.freedesktop.login1.set-reboot-to-boot-loader-entry.

ScheduleShutdown and CancelScheduledShutdown require the same privileges (listed above) as the immediate poweroff/reboot/halt operations.

Inhibit() is protected via one of org.freedesktop.login1.inhibit-block-shutdown, org.freedesktop.login1.inhibit-delay-shutdown, org.freedesktop.login1.inhibit-block-sleep, org.freedesktop.login1.inhibit-delay-sleep, org.freedesktop.login1.inhibit-block-idle, org.freedesktop.login1.inhibit-handle-power-key, org.freedesktop.login1.inhibit-handle-suspend-key, org.freedesktop.login1.inhibit-handle-hibernate-key, org.freedesktop.login1.inhibit-handle-lid-switch depending on the lock type and mode taken.

The interactive boolean parameters can be used to control whether polkit should interactively ask the user for authentication credentials if required.