The two example programs below demonstrate the usage of the
fanotify API.
Example program: fanotify_example.c
The first program is an example of fanotify being used with its
event object information passed in the form of a file descriptor.
The program marks the mount passed as a command-line argument and
waits for events of type FAN_OPEN_PERM
and FAN_CLOSE_WRITE
. When
a permission event occurs, a FAN_ALLOW
response is given.
The following shell session shows an example of running this
program. This session involved editing the file
/home/user/temp/notes. Before the file was opened, a
FAN_OPEN_PERM
event occurred. After the file was closed, a
FAN_CLOSE_WRITE
event occurred. Execution of the program ends
when the user presses the ENTER key.
# ./fanotify_example /home
Press enter key to terminate.
Listening for events.
FAN_OPEN_PERM: File /home/user/temp/notes
FAN_CLOSE_WRITE: File /home/user/temp/notes
Listening for events stopped.
Program source: fanotify_example.c
#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/fanotify.h>
#include <unistd.h>
/* Read all available fanotify events from the file descriptor 'fd'. */
static void
handle_events(int fd)
{
const struct fanotify_event_metadata *metadata;
struct fanotify_event_metadata buf[200];
ssize_t len;
char path[PATH_MAX];
ssize_t path_len;
char procfd_path[PATH_MAX];
struct fanotify_response response;
/* Loop while events can be read from fanotify file descriptor. */
for (;;) {
/* Read some events. */
len = read(fd, buf, sizeof(buf));
if (len == -1 && errno != EAGAIN) {
perror("read");
exit(EXIT_FAILURE);
}
/* Check if end of available data reached. */
if (len <= 0)
break;
/* Point to the first event in the buffer. */
metadata = buf;
/* Loop over all events in the buffer. */
while (FAN_EVENT_OK(metadata, len)) {
/* Check that run-time and compile-time structures match. */
if (metadata->vers != FANOTIFY_METADATA_VERSION) {
fprintf(stderr,
"Mismatch of fanotify metadata version.\n");
exit(EXIT_FAILURE);
}
/* metadata->fd contains either FAN_NOFD, indicating a
queue overflow, or a file descriptor (a nonnegative
integer). Here, we simply ignore queue overflow. */
if (metadata->fd >= 0) {
/* Handle open permission event. */
if (metadata->mask & FAN_OPEN_PERM) {
printf("FAN_OPEN_PERM: ");
/* Allow file to be opened. */
response.fd = metadata->fd;
response.response = FAN_ALLOW;
write(fd, &response, sizeof(response));
}
/* Handle closing of writable file event. */
if (metadata->mask & FAN_CLOSE_WRITE)
printf("FAN_CLOSE_WRITE: ");
/* Retrieve and print pathname of the accessed file. */
snprintf(procfd_path, sizeof(procfd_path),
"/proc/self/fd/%d", metadata->fd);
path_len = readlink(procfd_path, path,
sizeof(path) - 1);
if (path_len == -1) {
perror("readlink");
exit(EXIT_FAILURE);
}
path[path_len] = '\0';
printf("File %s\n", path);
/* Close the file descriptor of the event. */
close(metadata->fd);
}
/* Advance to next event. */
metadata = FAN_EVENT_NEXT(metadata, len);
}
}
}
int
main(int argc, char *argv[])
{
char buf;
int fd, poll_num;
nfds_t nfds;
struct pollfd fds[2];
/* Check mount point is supplied. */
if (argc != 2) {
fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);
exit(EXIT_FAILURE);
}
printf("Press enter key to terminate.\n");
/* Create the file descriptor for accessing the fanotify API. */
fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
O_RDONLY | O_LARGEFILE);
if (fd == -1) {
perror("fanotify_init");
exit(EXIT_FAILURE);
}
/* Mark the mount for:
- permission events before opening files
- notification events after closing a write-enabled
file descriptor. */
if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,
argv[1]) == -1) {
perror("fanotify_mark");
exit(EXIT_FAILURE);
}
/* Prepare for polling. */
nfds = 2;
fds[0].fd = STDIN_FILENO; /* Console input */
fds[0].events = POLLIN;
fds[1].fd = fd; /* Fanotify input */
fds[1].events = POLLIN;
/* This is the loop to wait for incoming events. */
printf("Listening for events.\n");
while (1) {
poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {
if (errno == EINTR) /* Interrupted by a signal */
continue; /* Restart poll() */
perror("poll"); /* Unexpected error */
exit(EXIT_FAILURE);
}
if (poll_num > 0) {
if (fds[0].revents & POLLIN) {
/* Console input is available: empty stdin and quit. */
while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
continue;
break;
}
if (fds[1].revents & POLLIN) {
/* Fanotify events are available. */
handle_events(fd);
}
}
}
printf("Listening for events stopped.\n");
exit(EXIT_SUCCESS);
}
Example program: fanotify_fid.c
The second program is an example of fanotify being used with a
group that identifies objects by file handles. The program marks
the filesystem object that is passed as a command-line argument
and waits until an event of type FAN_CREATE
has occurred. The
event mask indicates which type of filesystem object—either a
file or a directory—was created. Once all events have been read
from the buffer and processed accordingly, the program simply
terminates.
The following shell sessions show two different invocations of
this program, with different actions performed on a watched
object.
The first session shows a mark being placed on /home/user. This
is followed by the creation of a regular file,
/home/user/testfile.txt. This results in a FAN_CREATE
event
being generated and reported against the file's parent watched
directory object and with the created file name. Program
execution ends once all events captured within the buffer have
been processed.
# ./fanotify_fid /home/user
Listening for events.
FAN_CREATE (file created):
Directory /home/user has been modified.
Entry 'testfile.txt' is not a subdirectory.
All events processed successfully. Program exiting.
$ touch /home/user/testfile.txt
# In another terminal
The second session shows a mark being placed on /home/user. This
is followed by the creation of a directory, /home/user/testdir.
This specific action results in a FAN_CREATE
event being
generated and is reported with the FAN_ONDIR
flag set and with
the created directory name.
# ./fanotify_fid /home/user
Listening for events.
FAN_CREATE | FAN_ONDIR (subdirectory created):
Directory /home/user has been modified.
Entry 'testdir' is a subdirectory.
All events processed successfully. Program exiting.
$ mkdir -p /home/user/testdir
# In another terminal
Program source: fanotify_fid.c
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fanotify.h>
#include <unistd.h>
#define BUF_SIZE 256
int
main(int argc, char *argv[])
{
int fd, ret, event_fd, mount_fd;
ssize_t len, path_len;
char path[PATH_MAX];
char procfd_path[PATH_MAX];
char events_buf[BUF_SIZE];
struct file_handle *file_handle;
struct fanotify_event_metadata *metadata;
struct fanotify_event_info_fid *fid;
const char *file_name;
struct stat sb;
if (argc != 2) {
fprintf(stderr, "Invalid number of command line arguments.\n");
exit(EXIT_FAILURE);
}
mount_fd = open(argv[1], O_DIRECTORY | O_RDONLY);
if (mount_fd == -1) {
perror(argv[1]);
exit(EXIT_FAILURE);
}
/* Create an fanotify file descriptor with FAN_REPORT_DFID_NAME as
a flag so that program can receive fid events with directory
entry name. */
fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_DFID_NAME, 0);
if (fd == -1) {
perror("fanotify_init");
exit(EXIT_FAILURE);
}
/* Place a mark on the filesystem object supplied in argv[1]. */
ret = fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_ONLYDIR,
FAN_CREATE | FAN_ONDIR,
AT_FDCWD, argv[1]);
if (ret == -1) {
perror("fanotify_mark");
exit(EXIT_FAILURE);
}
printf("Listening for events.\n");
/* Read events from the event queue into a buffer. */
len = read(fd, events_buf, sizeof(events_buf));
if (len == -1 && errno != EAGAIN) {
perror("read");
exit(EXIT_FAILURE);
}
/* Process all events within the buffer. */
for (metadata = (struct fanotify_event_metadata *) events_buf;
FAN_EVENT_OK(metadata, len);
metadata = FAN_EVENT_NEXT(metadata, len)) {
fid = (struct fanotify_event_info_fid *) (metadata + 1);
file_handle = (struct file_handle *) fid->handle;
/* Ensure that the event info is of the correct type. */
if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_FID ||
fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID) {
file_name = NULL;
} else if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID_NAME) {
file_name = file_handle->f_handle +
file_handle->handle_bytes;
} else {
fprintf(stderr, "Received unexpected event info type.\n");
exit(EXIT_FAILURE);
}
if (metadata->mask == FAN_CREATE)
printf("FAN_CREATE (file created):\n");
if (metadata->mask == (FAN_CREATE | FAN_ONDIR))
printf("FAN_CREATE | FAN_ONDIR (subdirectory created):\n");
/* metadata->fd is set to FAN_NOFD when the group identifies
objects by file handles. To obtain a file descriptor for
the file object corresponding to an event you can use the
struct file_handle that's provided within the
fanotify_event_info_fid in conjunction with the
open_by_handle_at(2) system call. A check for ESTALE is
done to accommodate for the situation where the file handle
for the object was deleted prior to this system call. */
event_fd = open_by_handle_at(mount_fd, file_handle, O_RDONLY);
if (event_fd == -1) {
if (errno == ESTALE) {
printf("File handle is no longer valid. "
"File has been deleted\n");
continue;
} else {
perror("open_by_handle_at");
exit(EXIT_FAILURE);
}
}
snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",
event_fd);
/* Retrieve and print the path of the modified dentry. */
path_len = readlink(procfd_path, path, sizeof(path) - 1);
if (path_len == -1) {
perror("readlink");
exit(EXIT_FAILURE);
}
path[path_len] = '\0';
printf("\tDirectory '%s' has been modified.\n", path);
if (file_name) {
ret = fstatat(event_fd, file_name, &sb, 0);
if (ret == -1) {
if (errno != ENOENT) {
perror("fstatat");
exit(EXIT_FAILURE);
}
printf("\tEntry '%s' does not exist.\n", file_name);
} else if ((sb.st_mode & S_IFMT) == S_IFDIR) {
printf("\tEntry '%s' is a subdirectory.\n", file_name);
} else {
printf("\tEntry '%s' is not a subdirectory.\n",
file_name);
}
}
/* Close associated file descriptor for this event. */
close(event_fd);
}
printf("All events processed successfully. Program exiting.\n");
exit(EXIT_SUCCESS);
}