Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   find    ( 1 )

поиск файлов в иерархии каталогов (search for files in a directory hierarchy)

EXPRESSION

The part of the command line after the list of starting points is the expression. This is a kind of query specification describing how we match files and what we do with the files that were matched. An expression is composed of a sequence of things:

Tests Tests return a true or false value, usually on the basis of some property of a file we are considering. The -empty test for example is true only when the current file is empty.

Actions Actions have side effects (such as printing something on the standard output) and return either true or false, usually based on whether or not they are successful. The -print action for example prints the name of the current file on the standard output.

Global options Global options affect the operation of tests and actions specified on any part of the command line. Global options always return true. The -depth option for example makes find traverse the file system in a depth-first order.

Positional options Positional options affect only tests or actions which follow them. Positional options always return true. The -regextype option for example is positional, specifying the regular expression dialect for regular expressions occurring later on the command line.

Operators Operators join together the other items within the expression. They include for example -o (meaning logical OR) and -a (meaning logical AND). Where an operator is missing, -a is assumed.

The -print action is performed on all files for which the whole expression is true, unless it contains an action other than -prune or -quit. Actions which inhibit the default -print are -delete, -exec, -execdir, -ok, -okdir, -fls, -fprint, -fprintf, -ls, -print and -printf.

The -delete action also acts like an option (since it implies -depth).

POSITIONAL OPTIONS Positional options always return true. They affect only tests occurring later on the command line.

-daystart Measure times (for -amin, -atime, -cmin, -ctime, -mmin, and -mtime) from the beginning of today rather than from 24 hours ago. This option only affects tests which appear later on the command line.

-follow Deprecated; use the -L option instead. Dereference symbolic links. Implies -noleaf. The -follow option affects only those tests which appear after it on the command line. Unless the -H or -L option has been specified, the position of the -follow option changes the behaviour of the -newer predicate; any files listed as the argument of -newer will be dereferenced if they are symbolic links. The same consideration applies to -newerXY, -anewer and -cnewer. Similarly, the -type predicate will always match against the type of the file that a symbolic link points to rather than the link itself. Using -follow causes the -lname and -ilname predicates always to return false.

-regextype type Changes the regular expression syntax understood by -regex and -iregex tests which occur later on the command line. To see which regular expression types are known, use -regextype help. The Texinfo documentation (see SEE ALSO) explains the meaning of and differences between the various types of regular expression.

-warn, -nowarn Turn warning messages on or off. These warnings apply only to the command line usage, not to any conditions that find might encounter when it searches directories. The default behaviour corresponds to -warn if standard input is a tty, and to -nowarn otherwise. If a warning message relating to command-line usage is produced, the exit status of find is not affected. If the POSIXLY_CORRECT environment variable is set, and -warn is also used, it is not specified which, if any, warnings will be active.

GLOBAL OPTIONS Global options always return true. Global options take effect even for tests which occur earlier on the command line. To prevent confusion, global options should specified on the command-line after the list of start points, just before the first test, positional option or action. If you specify a global option in some other place, find will issue a warning message explaining that this can be confusing.

The global options occur after the list of start points, and so are not the same kind of option as -L, for example.

-d A synonym for -depth, for compatibility with FreeBSD, NetBSD, MacOS X and OpenBSD.

-depth Process each directory's contents before the directory itself. The -delete action also implies -depth.

-files0-from file Read the starting points from file instead of getting them on the command line. In contrast to the known limitations of passing starting points via arguments on the command line, namely the limitation of the amount of file names, and the inherent ambiguity of file names clashing with option names, using this option allows to safely pass an arbitrary number of starting points to find.

Using this option and passing starting points on the command line is mutually exclusive, and is therefore not allowed at the same time.

The file argument is mandatory. One can use -files0-from - to read the list of starting points from the standard input stream, and e.g. from a pipe. In this case, the actions -ok and -okdir are not allowed, because they would obviously interfere with reading from standard input in order to get a user confirmation.

The starting points in file have to be separated by ASCII NUL characters. Two consecutive NUL characters, i.e., a starting point with a Zero-length file name is not allowed and will lead to an error diagnostic followed by a non- Zero exit code later. The given file has to contain at least one starting point, i.e., an empty input file will be diagnosed as well.

The processing of the starting points is otherwise as usual, e.g. find will recurse into subdirectories unless otherwise prevented. To process only the starting points, one can additionally pass -maxdepth 0.

Further notes: if a file is listed more than once in the input file, it is unspecified whether it is visited more than once. If the file is mutated during the operation of find, the result is unspecified as well. Finally, the seek position within the named file at the time find exits, be it with -quit or in any other way, is also unspecified. By "unspecified" here is meant that it may or may not work or do any specific thing, and that the behavior may change from platform to platform, or from findutils release to release.

-help, --help Print a summary of the command-line usage of find and exit.

-ignore_readdir_race Normally, find will emit an error message when it fails to stat a file. If you give this option and a file is deleted between the time find reads the name of the file from the directory and the time it tries to stat the file, no error message will be issued. This also applies to files or directories whose names are given on the command line. This option takes effect at the time the command line is read, which means that you cannot search one part of the filesystem with this option on and part of it with this option off (if you need to do that, you will need to issue two find commands instead, one with the option and one without it).

Furthermore, find with the -ignore_readdir_race option will ignore errors of the -delete action in the case the file has disappeared since the parent directory was read: it will not output an error diagnostic, and the return code of the -delete action will be true.

-maxdepth levels Descend at most levels (a non-negative integer) levels of directories below the starting-points. Using -maxdepth 0 means only apply the tests and actions to the starting- points themselves.

-mindepth levels Do not apply any tests or actions at levels less than levels (a non-negative integer). Using -mindepth 1 means process all files except the starting-points.

-mount Don't descend directories on other filesystems. An alternate name for -xdev, for compatibility with some other versions of find.

-noignore_readdir_race Turns off the effect of -ignore_readdir_race.

-noleaf Do not optimize by assuming that directories contain 2 fewer subdirectories than their hard link count. This option is needed when searching filesystems that do not follow the Unix directory-link convention, such as CD-ROM or MS-DOS filesystems or AFS volume mount points. Each directory on a normal Unix filesystem has at least 2 hard links: its name and its `.' entry. Additionally, its subdirectories (if any) each have a `..' entry linked to that directory. When find is examining a directory, after it has statted 2 fewer subdirectories than the directory's link count, it knows that the rest of the entries in the directory are non-directories (`leaf' files in the directory tree). If only the files' names need to be examined, there is no need to stat them; this gives a significant increase in search speed.

-version, --version Print the find version number and exit.

-xdev Don't descend directories on other filesystems.

TESTS Some tests, for example -newerXY and -samefile, allow comparison between the file currently being examined and some reference file specified on the command line. When these tests are used, the interpretation of the reference file is determined by the options -H, -L and -P and any previous -follow, but the reference file is only examined once, at the time the command line is parsed. If the reference file cannot be examined (for example, the stat(2) system call fails for it), an error message is issued, and find exits with a nonzero status.

A numeric argument n can be specified to tests (like -amin, -mtime, -gid, -inum, -links, -size, -uid and -used) as

+n for greater than n,

-n for less than n,

n for exactly n.

Supported tests:

-amin n File was last accessed less than, more than or exactly n minutes ago.

-anewer reference Time of the last access of the current file is more recent than that of the last data modification of the reference file. If reference is a symbolic link and the -H option or the -L option is in effect, then the time of the last data modification of the file it points to is always used.

-atime n File was last accessed less than, more than or exactly n*24 hours ago. When find figures out how many 24-hour periods ago the file was last accessed, any fractional part is ignored, so to match -atime +1, a file has to have been accessed at least two days ago.

-cmin n File's status was last changed less than, more than or exactly n minutes ago.

-cnewer reference Time of the last status change of the current file is more recent than that of the last data modification of the reference file. If reference is a symbolic link and the -H option or the -L option is in effect, then the time of the last data modification of the file it points to is always used.

-ctime n File's status was last changed less than, more than or exactly n*24 hours ago. See the comments for -atime to understand how rounding affects the interpretation of file status change times.

-empty File is empty and is either a regular file or a directory.

-executable Matches files which are executable and directories which are searchable (in a file name resolution sense) by the current user. This takes into account access control lists and other permissions artefacts which the -perm test ignores. This test makes use of the access(2) system call, and so can be fooled by NFS servers which do UID mapping (or root-squashing), since many systems implement access(2) in the client's kernel and so cannot make use of the UID mapping information held on the server. Because this test is based only on the result of the access(2) system call, there is no guarantee that a file for which this test succeeds can actually be executed.

-false Always false.

-fstype type File is on a filesystem of type type. The valid filesystem types vary among different versions of Unix; an incomplete list of filesystem types that are accepted on some version of Unix or another is: ufs, 4.2, 4.3, nfs, tmp, mfs, S51K, S52K. You can use -printf with the %F directive to see the types of your filesystems.

-gid n File's numeric group ID is less than, more than or exactly n.

-group gname File belongs to group gname (numeric group ID allowed).

-ilname pattern Like -lname, but the match is case insensitive. If the -L option or the -follow option is in effect, this test returns false unless the symbolic link is broken.

-iname pattern Like -name, but the match is case insensitive. For example, the patterns `fo*' and `F??' match the file names `Foo', `FOO', `foo', `fOo', etc. The pattern `*foo*` will also match a file called '.foobar'.

-inum n File has inode number smaller than, greater than or exactly n. It is normally easier to use the -samefile test instead.

-ipath pattern Like -path. but the match is case insensitive.

-iregex pattern Like -regex, but the match is case insensitive.

-iwholename pattern See -ipath. This alternative is less portable than -ipath.

-links n File has less than, more than or exactly n hard links.

-lname pattern File is a symbolic link whose contents match shell pattern pattern. The metacharacters do not treat `/' or `.' specially. If the -L option or the -follow option is in effect, this test returns false unless the symbolic link is broken.

-mmin n File's data was last modified less than, more than or exactly n minutes ago.

-mtime n File's data was last modified less than, more than or exactly n*24 hours ago. See the comments for -atime to understand how rounding affects the interpretation of file modification times.

-name pattern Base of file name (the path with the leading directories removed) matches shell pattern pattern. Because the leading directories are removed, the file names considered for a match with -name will never include a slash, so `-name a/b' will never match anything (you probably need to use -path instead). A warning is issued if you try to do this, unless the environment variable POSIXLY_CORRECT is set. The metacharacters (`*', `?', and `[]') match a `.' at the start of the base name (this is a change in findutils-4.2.2; see section STANDARDS CONFORMANCE below). To ignore a directory and the files under it, use -prune rather than checking every file in the tree; see an example in the description of that action. Braces are not recognised as being special, despite the fact that some shells including Bash imbue braces with a special meaning in shell patterns. The filename matching is performed with the use of the fnmatch(3) library function. Don't forget to enclose the pattern in quotes in order to protect it from expansion by the shell.

-newer reference Time of the last data modification of the current file is more recent than that of the last data modification of the reference file. If reference is a symbolic link and the -H option or the -L option is in effect, then the time of the last data modification of the file it points to is always used.

-newerXY reference Succeeds if timestamp X of the file being considered is newer than timestamp Y of the file reference. The letters X and Y can be any of the following letters:

a The access time of the file reference B The birth time of the file reference c The inode status change time of reference m The modification time of the file reference t reference is interpreted directly as a time

Some combinations are invalid; for example, it is invalid for X to be t. Some combinations are not implemented on all systems; for example B is not supported on all systems. If an invalid or unsupported combination of XY is specified, a fatal error results. Time specifications are interpreted as for the argument to the -d option of GNU date. If you try to use the birth time of a reference file, and the birth time cannot be determined, a fatal error message results. If you specify a test which refers to the birth time of files being examined, this test will fail for any files where the birth time is unknown.

-nogroup No group corresponds to file's numeric group ID.

-nouser No user corresponds to file's numeric user ID.

-path pattern File name matches shell pattern pattern. The metacharacters do not treat `/' or `.' specially; so, for example, find . -path "./sr*sc" will print an entry for a directory called ./src/misc (if one exists). To ignore a whole directory tree, use -prune rather than checking every file in the tree. Note that the pattern match test applies to the whole file name, starting from one of the start points named on the command line. It would only make sense to use an absolute path name here if the relevant start point is also an absolute path. This means that this command will never match anything: find bar -path /foo/bar/myfile -print Find compares the -path argument with the concatenation of a directory name and the base name of the file it's examining. Since the concatenation will never end with a slash, -path arguments ending in a slash will match nothing (except perhaps a start point specified on the command line). The predicate -path is also supported by HP-UX find and is part of the POSIX 2008 standard.

-perm mode File's permission bits are exactly mode (octal or symbolic). Since an exact match is required, if you want to use this form for symbolic modes, you may have to specify a rather complex mode string. For example `-perm g=w' will only match files which have mode 0020 (that is, ones for which group write permission is the only permission set). It is more likely that you will want to use the `/' or `-' forms, for example `-perm -g=w', which matches any file with group write permission. See the EXAMPLES section for some illustrative examples.

-perm -mode All of the permission bits mode are set for the file. Symbolic modes are accepted in this form, and this is usually the way in which you would want to use them. You must specify `u', `g' or `o' if you use a symbolic mode. See the EXAMPLES section for some illustrative examples.

-perm /mode Any of the permission bits mode are set for the file. Symbolic modes are accepted in this form. You must specify `u', `g' or `o' if you use a symbolic mode. See the EXAMPLES section for some illustrative examples. If no permission bits in mode are set, this test matches any file (the idea here is to be consistent with the behaviour of -perm -000).

-perm +mode This is no longer supported (and has been deprecated since 2005). Use -perm /mode instead.

-readable Matches files which are readable by the current user. This takes into account access control lists and other permissions artefacts which the -perm test ignores. This test makes use of the access(2) system call, and so can be fooled by NFS servers which do UID mapping (or root- squashing), since many systems implement access(2) in the client's kernel and so cannot make use of the UID mapping information held on the server.

-regex pattern File name matches regular expression pattern. This is a match on the whole path, not a search. For example, to match a file named ./fubar3, you can use the regular expression `.*bar.' or `.*b.*3', but not `f.*r3'. The regular expressions understood by find are by default Emacs Regular Expressions (except that `.' matches newline), but this can be changed with the -regextype option.

-samefile name File refers to the same inode as name. When -L is in effect, this can include symbolic links.

-size n[cwbkMG] File uses less than, more than or exactly n units of space, rounding up. The following suffixes can be used:

`b' for 512-byte blocks (this is the default if no suffix is used)

`c' for bytes

`w' for two-byte words

`k' for kibibytes (KiB, units of 1024 bytes)

`M' for mebibytes (MiB, units of 1024 * 1024 = 1048576 bytes)

`G' for gibibytes (GiB, units of 1024 * 1024 * 1024 = 1073741824 bytes)

The size is simply the st_size member of the struct stat populated by the lstat (or stat) system call, rounded up as shown above. In other words, it's consistent with the result you get for ls -l. Bear in mind that the `%k' and `%b' format specifiers of -printf handle sparse files differently. The `b' suffix always denotes 512-byte blocks and never 1024-byte blocks, which is different to the behaviour of -ls.

The + and - prefixes signify greater than and less than, as usual; i.e., an exact size of n units does not match. Bear in mind that the size is rounded up to the next unit. Therefore -size -1M is not equivalent to -size -1048576c. The former only matches empty files, the latter matches files from 0 to 1,048,575 bytes.

-true Always true.

-type c File is of type c:

b block (buffered) special

c character (unbuffered) special

d directory

p named pipe (FIFO)

f regular file

l symbolic link; this is never true if the -L option or the -follow option is in effect, unless the symbolic link is broken. If you want to search for symbolic links when -L is in effect, use -xtype.

s socket

D door (Solaris)

To search for more than one type at once, you can supply the combined list of type letters separated by a comma `,' (GNU extension).

-uid n File's numeric user ID is less than, more than or exactly n.

-used n File was last accessed less than, more than or exactly n days after its status was last changed.

-user uname File is owned by user uname (numeric user ID allowed).

-wholename pattern See -path. This alternative is less portable than -path.

-writable Matches files which are writable by the current user. This takes into account access control lists and other permissions artefacts which the -perm test ignores. This test makes use of the access(2) system call, and so can be fooled by NFS servers which do UID mapping (or root- squashing), since many systems implement access(2) in the client's kernel and so cannot make use of the UID mapping information held on the server.

-xtype c The same as -type unless the file is a symbolic link. For symbolic links: if the -H or -P option was specified, true if the file is a link to a file of type c; if the -L option has been given, true if c is `l'. In other words, for symbolic links, -xtype checks the type of the file that -type does not check.

-context pattern (SELinux only) Security context of the file matches glob pattern.

ACTIONS -delete Delete files; true if removal succeeded. If the removal failed, an error message is issued. If -delete fails, find's exit status will be nonzero (when it eventually exits). Use of -delete automatically turns on the `-depth' option.

Warnings: Don't forget that the find command line is evaluated as an expression, so putting -delete first will make find try to delete everything below the starting points you specified. When testing a find command line that you later intend to use with -delete, you should explicitly specify -depth in order to avoid later surprises. Because -delete implies -depth, you cannot usefully use -prune and -delete together.

Together with the -ignore_readdir_race option, find will ignore errors of the -delete action in the case the file has disappeared since the parent directory was read: it will not output an error diagnostic, and the return code of the -delete action will be true.

-exec command ; Execute command; true if 0 status is returned. All following arguments to find are taken to be arguments to the command until an argument consisting of `;' is encountered. The string `{}' is replaced by the current file name being processed everywhere it occurs in the arguments to the command, not just in arguments where it is alone, as in some versions of find. Both of these constructions might need to be escaped (with a `\') or quoted to protect them from expansion by the shell. See the EXAMPLES section for examples of the use of the -exec option. The specified command is run once for each matched file. The command is executed in the starting directory. There are unavoidable security problems surrounding use of the -exec action; you should use the -execdir option instead.

-exec command {} + This variant of the -exec action runs the specified command on the selected files, but the command line is built by appending each selected file name at the end; the total number of invocations of the command will be much less than the number of matched files. The command line is built in much the same way that xargs builds its command lines. Only one instance of `{}' is allowed within the command, and it must appear at the end, immediately before the `+'; it needs to be escaped (with a `\') or quoted to protect it from interpretation by the shell. The command is executed in the starting directory. If any invocation with the `+' form returns a non-zero value as exit status, then find returns a non-zero exit status. If find encounters an error, this can sometimes cause an immediate exit, so some pending commands may not be run at all. For this reason -exec my- command ... {} + -quit may not result in my-command actually being run. This variant of -exec always returns true.

-execdir command ;

-execdir command {} + Like -exec, but the specified command is run from the subdirectory containing the matched file, which is not normally the directory in which you started find. As with -exec, the {} should be quoted if find is being invoked from a shell. This a much more secure method for invoking commands, as it avoids race conditions during resolution of the paths to the matched files. As with the -exec action, the `+' form of -execdir will build a command line to process more than one matched file, but any given invocation of command will only list files that exist in the same subdirectory. If you use this option, you must ensure that your PATH environment variable does not reference `.'; otherwise, an attacker can run any commands they like by leaving an appropriately-named file in a directory in which you will run -execdir. The same applies to having entries in PATH which are empty or which are not absolute directory names. If any invocation with the `+' form returns a non-zero value as exit status, then find returns a non-zero exit status. If find encounters an error, this can sometimes cause an immediate exit, so some pending commands may not be run at all. The result of the action depends on whether the + or the ; variant is being used; -execdir command {} + always returns true, while -execdir command {} ; returns true only if command returns 0.

-fls file True; like -ls but write to file like -fprint. The output file is always created, even if the predicate is never matched. See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-fprint file True; print the full file name into file file. If file does not exist when find is run, it is created; if it does exist, it is truncated. The file names /dev/stdout and /dev/stderr are handled specially; they refer to the standard output and standard error output, respectively. The output file is always created, even if the predicate is never matched. See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-fprint0 file True; like -print0 but write to file like -fprint. The output file is always created, even if the predicate is never matched. See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-fprintf file format True; like -printf but write to file like -fprint. The output file is always created, even if the predicate is never matched. See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-ls True; list current file in ls -dils format on standard output. The block counts are of 1 KB blocks, unless the environment variable POSIXLY_CORRECT is set, in which case 512-byte blocks are used. See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-ok command ; Like -exec but ask the user first. If the user agrees, run the command. Otherwise just return false. If the command is run, its standard input is redirected from /dev/null. This action may not be specified together with the -files0-from option.

The response to the prompt is matched against a pair of regular expressions to determine if it is an affirmative or negative response. This regular expression is obtained from the system if the POSIXLY_CORRECT environment variable is set, or otherwise from find's message translations. If the system has no suitable definition, find's own definition will be used. In either case, the interpretation of the regular expression itself will be affected by the environment variables LC_CTYPE (character classes) and LC_COLLATE (character ranges and equivalence classes).

-okdir command ; Like -execdir but ask the user first in the same way as for -ok. If the user does not agree, just return false. If the command is run, its standard input is redirected from /dev/null. This action may not be specified together with the -files0-from option.

-print True; print the full file name on the standard output, followed by a newline. If you are piping the output of find into another program and there is the faintest possibility that the files which you are searching for might contain a newline, then you should seriously consider using the -print0 option instead of -print. See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-print0 True; print the full file name on the standard output, followed by a null character (instead of the newline character that -print uses). This allows file names that contain newlines or other types of white space to be correctly interpreted by programs that process the find output. This option corresponds to the -0 option of xargs.

-printf format True; print format on the standard output, interpreting `\' escapes and `%' directives. Field widths and precisions can be specified as with the printf(3) C function. Please note that many of the fields are printed as %s rather than %d, and this may mean that flags don't work as you might expect. This also means that the `-' flag does work (it forces fields to be left-aligned). Unlike -print, -printf does not add a newline at the end of the string. The escapes and directives are:

\a Alarm bell.

\b Backspace.

\c Stop printing from this format immediately and flush the output.

\f Form feed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\0 ASCII NUL.

\\ A literal backslash (`\').

\NNN The character whose ASCII code is NNN (octal).

A `\' character followed by any other character is treated as an ordinary character, so they both are printed.

%% A literal percent sign.

%a File's last access time in the format returned by the C ctime(3) function.

%Ak File's last access time in the format specified by k, which is either `@' or a directive for the C strftime(3) function. The following shows an incomplete list of possible values for k. Please refer to the documentation of strftime(3) for the full list. Some of the conversion specification characters might not be available on all systems, due to differences in the implementation of the strftime(3) library function.

@ seconds since Jan. 1, 1970, 00:00 GMT, with fractional part.

Time fields:

H hour (00..23)

I hour (01..12)

k hour ( 0..23)

l hour ( 1..12)

M minute (00..59)

p locale's AM or PM

r time, 12-hour (hh:mm:ss [AP]M)

S Second (00.00 .. 61.00). There is a fractional part.

T time, 24-hour (hh:mm:ss.xxxxxxxxxx)

+ Date and time, separated by `+', for example `2004-04-28+22:22:05.0'. This is a GNU extension. The time is given in the current timezone (which may be affected by setting the TZ environment variable). The seconds field includes a fractional part.

X locale's time representation (H:M:S). The seconds field includes a fractional part.

Z time zone (e.g., EDT), or nothing if no time zone is determinable

Date fields:

a locale's abbreviated weekday name (Sun..Sat)

A locale's full weekday name, variable length (Sunday..Saturday)

b locale's abbreviated month name (Jan..Dec)

B locale's full month name, variable length (January..December)

c locale's date and time (Sat Nov 04 12:02:33 EST 1989). The format is the same as for ctime(3) and so to preserve compatibility with that format, there is no fractional part in the seconds field.

d day of month (01..31)

D date (mm/dd/yy)

F date (yyyy-mm-dd)

h same as b

j day of year (001..366)

m month (01..12)

U week number of year with Sunday as first day of week (00..53)

w day of week (0..6)

W week number of year with Monday as first day of week (00..53)

x locale's date representation (mm/dd/yy)

y last two digits of year (00..99)

Y year (1970...)

%b The amount of disk space used for this file in 512-byte blocks. Since disk space is allocated in multiples of the filesystem block size this is usually greater than %s/512, but it can also be smaller if the file is a sparse file.

%c File's last status change time in the format returned by the C ctime(3) function.

%Ck File's last status change time in the format specified by k, which is the same as for %A.

%d File's depth in the directory tree; 0 means the file is a starting-point.

%D The device number on which the file exists (the st_dev field of struct stat), in decimal.

%f Print the basename; the file's name with any leading directories removed (only the last element). For /, the result is `/'. See the EXAMPLES section for an example.

%F Type of the filesystem the file is on; this value can be used for -fstype.

%g File's group name, or numeric group ID if the group has no name.

%G File's numeric group ID.

%h Dirname; the Leading directories of the file's name (all but the last element). If the file name contains no slashes (since it is in the current directory) the %h specifier expands to `.'. For files which are themselves directories and contain a slash (including /), %h expands to the empty string. See the EXAMPLES section for an example.

%H Starting-point under which file was found.

%i File's inode number (in decimal).

%k The amount of disk space used for this file in 1 KB blocks. Since disk space is allocated in multiples of the filesystem block size this is usually greater than %s/1024, but it can also be smaller if the file is a sparse file.

%l Object of symbolic link (empty string if file is not a symbolic link).

%m File's permission bits (in octal). This option uses the `traditional' numbers which most Unix implementations use, but if your particular implementation uses an unusual ordering of octal permissions bits, you will see a difference between the actual value of the file's mode and the output of %m. Normally you will want to have a leading zero on this number, and to do this, you should use the # flag (as in, for example, `%#m').

%M File's permissions (in symbolic form, as for ls). This directive is supported in findutils 4.2.5 and later.

%n Number of hard links to file.

%p File's name.

%P File's name with the name of the starting-point under which it was found removed.

%s File's size in bytes.

%S File's sparseness. This is calculated as (BLOCKSIZE*st_blocks / st_size). The exact value you will get for an ordinary file of a certain length is system-dependent. However, normally sparse files will have values less than 1.0, and files which use indirect blocks may have a value which is greater than 1.0. In general the number of blocks used by a file is file system dependent. The value used for BLOCKSIZE is system-dependent, but is usually 512 bytes. If the file size is zero, the value printed is undefined. On systems which lack support for st_blocks, a file's sparseness is assumed to be 1.0.

%t File's last modification time in the format returned by the C ctime(3) function.

%Tk File's last modification time in the format specified by k, which is the same as for %A.

%u File's user name, or numeric user ID if the user has no name.

%U File's numeric user ID.

%y File's type (like in ls -l), U=unknown type (shouldn't happen)

%Y File's type (like %y), plus follow symbolic links: `L'=loop, `N'=nonexistent, `?' for any other error when determining the type of the target of a symbolic link.

%Z (SELinux only) file's security context.

%{ %[ %( Reserved for future use.

A `%' character followed by any other character is discarded, but the other character is printed (don't rely on this, as further format characters may be introduced). A `%' at the end of the format argument causes undefined behaviour since there is no following character. In some locales, it may hide your door keys, while in others it may remove the final page from the novel you are reading.

The %m and %d directives support the #, 0 and + flags, but the other directives do not, even if they print numbers. Numeric directives that do not support these flags include G, U, b, D, k and n. The `-' format flag is supported and changes the alignment of a field from right-justified (which is the default) to left-justified.

See the UNUSUAL FILENAMES section for information about how unusual characters in filenames are handled.

-prune True; if the file is a directory, do not descend into it. If -depth is given, then -prune has no effect. Because -delete implies -depth, you cannot usefully use -prune and -delete together. For example, to skip the directory src/emacs and all files and directories under it, and print the names of the other files found, do something like this: find . -path ./src/emacs -prune -o -print

-quit Exit immediately (with return value zero if no errors have occurred). This is different to -prune because -prune only applies to the contents of pruned directories, while -quit simply makes find stop immediately. No child processes will be left running. Any command lines which have been built by -exec ... + or -execdir ... + are invoked before the program is exited. After -quit is executed, no more files specified on the command line will be processed. For example, `find /tmp/foo /tmp/bar -print -quit` will print only `/tmp/foo`. One common use of -quit is to stop searching the file system once we have found what we want. For example, if we want to find just a single file we can do this: find / -name needle -print -quit

OPERATORS Listed in order of decreasing precedence:

( expr ) Force precedence. Since parentheses are special to the shell, you will normally need to quote them. Many of the examples in this manual page use backslashes for this purpose: `\(...\)' instead of `(...)'.

! expr True if expr is false. This character will also usually need protection from interpretation by the shell.

-not expr Same as ! expr, but not POSIX compliant.

expr1 expr2 Two expressions in a row are taken to be joined with an implied -a; expr2 is not evaluated if expr1 is false.

expr1 -a expr2 Same as expr1 expr2.

expr1 -and expr2 Same as expr1 expr2, but not POSIX compliant.

expr1 -o expr2 Or; expr2 is not evaluated if expr1 is true.

expr1 -or expr2 Same as expr1 -o expr2, but not POSIX compliant.

expr1 , expr2 List; both expr1 and expr2 are always evaluated. The value of expr1 is discarded; the value of the list is the value of expr2. The comma operator can be useful for searching for several different types of thing, but traversing the filesystem hierarchy only once. The -fprintf action can be used to list the various matched items into several different output files.

Please note that -a when specified implicitly (for example by two tests appearing without an explicit operator between them) or explicitly has higher precedence than -o. This means that find . -name afile -o -name bfile -print will never print afile.