Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   fcntl.3p    ( 3 )

файловый контроль (file control)

Обоснование (Rationale)

The ellipsis in the SYNOPSIS is the syntax specified by the ISO C standard for a variable number of arguments. It is used because System V uses pointers for the implementation of file locking functions.

This volume of POSIX.1‐2017 permits concurrent read and write access to file data using the fcntl() function; this is a change from the 1984 /usr/group standard and early proposals. Without concurrency controls, this feature may not be fully utilized without occasional loss of data.

Data losses occur in several ways. One case occurs when several processes try to update the same record, without sequencing controls; several updates may occur in parallel and the last writer ``wins''. Another case is a bit-tree or other internal list-based database that is undergoing reorganization. Without exclusive use to the tree segment by the updating process, other reading processes chance getting lost in the database when the index blocks are split, condensed, inserted, or deleted. While fcntl() is useful for many applications, it is not intended to be overly general and does not handle the bit-tree example well.

This facility is only required for regular files because it is not appropriate for many devices such as terminals and network connections.

Since fcntl() works with ``any file descriptor associated with that file, however it is obtained'', the file descriptor may have been inherited through a fork() or exec operation and thus may affect a file that another process also has open.

The use of the open file description to identify what to lock requires extra calls and presents problems if several processes are sharing an open file description, but there are too many implementations of the existing mechanism for this volume of POSIX.1‐2017 to use different specifications.

Another consequence of this model is that closing any file descriptor for a given file (whether or not it is the same open file description that created the lock) causes the locks on that file to be relinquished for that process. Equivalently, any close for any file/process pair relinquishes the locks owned on that file for that process. But note that while an open file description may be shared through fork(), locks are not inherited through fork(). Yet locks may be inherited through one of the exec functions.

The identification of a machine in a network environment is outside the scope of this volume of POSIX.1‐2017. Thus, an l_sysid member, such as found in System V, is not included in the locking structure.

Changing of lock types can result in a previously locked region being split into smaller regions.

Mandatory locking was a major feature of the 1984 /usr/group standard.

For advisory file record locking to be effective, all processes that have access to a file must cooperate and use the advisory mechanism before doing I/O on the file. Enforcement-mode record locking is important when it cannot be assumed that all processes are cooperating. For example, if one user uses an editor to update a file at the same time that a second user executes another process that updates the same file and if only one of the two processes is using advisory locking, the processes are not cooperating. Enforcement-mode record locking would protect against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each I/O operation with lock (or test) and unlock operations. With enforcement-mode file and record locking, a process can lock the file once and unlock when all I/O operations have been completed. Enforcement-mode record locking provides a base that can be enhanced; for example, with sharable locks. That is, the mechanism could be enhanced to allow a process to lock a file so other processes could read it, but none of them could write it.

Mandatory locks were omitted for several reasons:

1. Mandatory lock setting was done by multiplexing the set- group-ID bit in most implementations; this was confusing, at best.

2. The relationship to file truncation as supported in 4.2 BSD was not well specified.

3. Any publicly readable file could be locked by anyone. Many historical implementations keep the password database in a publicly readable file. A malicious user could thus prohibit logins. Another possibility would be to hold open a long- distance telephone line.

4. Some demand-paged historical implementations offer memory mapped files, and enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm() may be used to provide a timeout facility in applications requiring it. This is useful in deadlock detection. Since implementation of full deadlock detection is not always feasible, the [EDEADLK] error was made optional.