Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   gcc    ( 1 )

компилятор C и C ++ проекта GNU (GNU project C and C++ compiler)

  Name  |  Synopsis  |  Description  |  Options  |    Options detail    |  Environment  |  Bugs  |  Note  |  See also  |

Параметры подробно (Options detail)


  Controlling the Kind of Output  |  Compiling C++ Programs  |  Controlling C Dialect  |  Controlling C++ Dialect  |  Controlling Objective-C and Objective-C++ Dialects  |  Control Diagnostic Messages Formatting  |  Request or Suppress Warnings 1  |  Request or Suppress Warnings 2  |  Request or Suppress Warnings 3  |  Debugging Your Program  |  Control Optimization 1  |  Control Optimization 2  |  Control Optimization 3  |  Control Optimization 4  |  Program Instrumentation  |  Controlling the Preprocessor  |  Linking  |  Directory Search  |    Code Generation Conventions    |  GCC Developer  |  Machine-Dependent  |  AArch64  |  Adapteva Epiphany  |  AMD GCN  |  ARC  |  ARM  |  AVR  |  Blackfin  |  C6X  |  CRIS  |  CR16  |  C-SKY  |  Darwin  |  DEC Alpha  |  FR30  |  FT32  |  FRV  |  GNU/Linux  |  H8/300  |  HPPA  |  IA-64  |  LM32  |  M32C  |  M32R/D  |  M680x0  |  MCore  |  MeP  |  MicroBlaze  |  MIPS  |  MMIX  |  MN10300  |  Moxie  |  MSP430  |  NDS32  |  Nios II  |  Nvidia PTX  |  OpenRISC  |  PDP-11  |  picoChip  |  RISC-V  |  RL78  |  IBM RS/6000 and PowerPC  |  RX  |  S/390 and zSeries  |  Score  |  SH  |  Solaris 2  |  SPARC  |  SPU  |  System V  |  TILE-Gx  |  TILEPro  |  V850  |  VAX  |  Visium  |  VMS  |  VxWorks  |  x86 1  |  x86 2  |  x86 Windows  |  Xstormy16  |  Xtensa  |

Code Generation Conventions

These machine-independent options control the interface
       conventions used in code generation.

       Most of them have both positive and negative forms; the negative
       form of -ffoo is -fno-foo.  In the table below, only one of the
       forms is listed---the one that is not the default.  You can
       figure out the other form by either removing no- or adding it.

       -fstack-reuse=reuse-level
           This option controls stack space reuse for user declared
           local/auto variables and compiler generated temporaries.
           reuse_level can be all, named_vars, or none. all enables
           stack reuse for all local variables and temporaries,
           named_vars enables the reuse only for user defined local
           variables with names, and none disables stack reuse
           completely. The default value is all. The option is needed
           when the program extends the lifetime of a scoped local
           variable or a compiler generated temporary beyond the end
           point defined by the language.  When a lifetime of a variable
           ends, and if the variable lives in memory, the optimizing
           compiler has the freedom to reuse its stack space with other
           temporaries or scoped local variables whose live range does
           not overlap with it. Legacy code extending local lifetime is
           likely to break with the stack reuse optimization.

           For example,

                      int *p;
                      {
                        int local1;

                        p = &local1;
                        local1 = 10;
                        ....
                      }
                      {
                         int local2;
                         local2 = 20;
                         ...
                      }

                      if (*p == 10)  // out of scope use of local1
                        {

                        }

           Another example:

                      struct A
                      {
                          A(int k) : i(k), j(k) { }
                          int i;
                          int j;
                      };

                      A *ap;

                      void foo(const A& ar)
                      {
                         ap = &ar;
                      }

                      void bar()
                      {
                         foo(A(10)); // temp object's lifetime ends when foo returns

                         {
                           A a(20);
                           ....
                         }
                         ap->i+= 10;  // ap references out of scope temp whose space
                                      // is reused with a. What is the value of ap->i?
                      }

           The lifetime of a compiler generated temporary is well
           defined by the C++ standard. When a lifetime of a temporary
           ends, and if the temporary lives in memory, the optimizing
           compiler has the freedom to reuse its stack space with other
           temporaries or scoped local variables whose live range does
           not overlap with it. However some of the legacy code relies
           on the behavior of older compilers in which temporaries'
           stack space is not reused, the aggressive stack reuse can
           lead to runtime errors. This option is used to control the
           temporary stack reuse optimization.

       -ftrapv
           This option generates traps for signed overflow on addition,
           subtraction, multiplication operations.  The options -ftrapv
           and -fwrapv override each other, so using -ftrapv -fwrapv on
           the command-line results in -fwrapv being effective.  Note
           that only active options override, so using -ftrapv -fwrapv
           -fno-wrapv on the command-line results in -ftrapv being
           effective.

       -fwrapv
           This option instructs the compiler to assume that signed
           arithmetic overflow of addition, subtraction and
           multiplication wraps around using twos-complement
           representation.  This flag enables some optimizations and
           disables others.  The options -ftrapv and -fwrapv override
           each other, so using -ftrapv -fwrapv on the command-line
           results in -fwrapv being effective.  Note that only active
           options override, so using -ftrapv -fwrapv -fno-wrapv on the
           command-line results in -ftrapv being effective.

       -fwrapv-pointer
           This option instructs the compiler to assume that pointer
           arithmetic overflow on addition and subtraction wraps around
           using twos-complement representation.  This flag disables
           some optimizations which assume pointer overflow is invalid.

       -fstrict-overflow
           This option implies -fno-wrapv -fno-wrapv-pointer and when
           negated implies -fwrapv -fwrapv-pointer.

       -fexceptions
           Enable exception handling.  Generates extra code needed to
           propagate exceptions.  For some targets, this implies GCC
           generates frame unwind information for all functions, which
           can produce significant data size overhead, although it does
           not affect execution.  If you do not specify this option, GCC
           enables it by default for languages like C++ that normally
           require exception handling, and disables it for languages
           like C that do not normally require it.  However, you may
           need to enable this option when compiling C code that needs
           to interoperate properly with exception handlers written in
           C++.  You may also wish to disable this option if you are
           compiling older C++ programs that don't use exception
           handling.

       -fnon-call-exceptions
           Generate code that allows trapping instructions to throw
           exceptions.  Note that this requires platform-specific
           runtime support that does not exist everywhere.  Moreover, it
           only allows trapping instructions to throw exceptions, i.e.
           memory references or floating-point instructions.  It does
           not allow exceptions to be thrown from arbitrary signal
           handlers such as "SIGALRM".

       -fdelete-dead-exceptions
           Consider that instructions that may throw exceptions but
           don't otherwise contribute to the execution of the program
           can be optimized away.  This option is enabled by default for
           the Ada front end, as permitted by the Ada language
           specification.  Optimization passes that cause dead
           exceptions to be removed are enabled independently at
           different optimization levels.

       -funwind-tables
           Similar to -fexceptions, except that it just generates any
           needed static data, but does not affect the generated code in
           any other way.  You normally do not need to enable this
           option; instead, a language processor that needs this
           handling enables it on your behalf.

       -fasynchronous-unwind-tables
           Generate unwind table in DWARF format, if supported by target
           machine.  The table is exact at each instruction boundary, so
           it can be used for stack unwinding from asynchronous events
           (such as debugger or garbage collector).

       -fno-gnu-unique
           On systems with recent GNU assembler and C library, the C++
           compiler uses the "STB_GNU_UNIQUE" binding to make sure that
           definitions of template static data members and static local
           variables in inline functions are unique even in the presence
           of "RTLD_LOCAL"; this is necessary to avoid problems with a
           library used by two different "RTLD_LOCAL" plugins depending
           on a definition in one of them and therefore disagreeing with
           the other one about the binding of the symbol.  But this
           causes "dlclose" to be ignored for affected DSOs; if your
           program relies on reinitialization of a DSO via "dlclose" and
           "dlopen", you can use -fno-gnu-unique.

       -fpcc-struct-return
           Return "short" "struct" and "union" values in memory like
           longer ones, rather than in registers.  This convention is
           less efficient, but it has the advantage of allowing
           intercallability between GCC-compiled files and files
           compiled with other compilers, particularly the Portable C
           Compiler (pcc).

           The precise convention for returning structures in memory
           depends on the target configuration macros.

           Short structures and unions are those whose size and
           alignment match that of some integer type.

           Warning: code compiled with the -fpcc-struct-return switch is
           not binary compatible with code compiled with the
           -freg-struct-return switch.  Use it to conform to a non-
           default application binary interface.

       -freg-struct-return
           Return "struct" and "union" values in registers when
           possible.  This is more efficient for small structures than
           -fpcc-struct-return.

           If you specify neither -fpcc-struct-return nor
           -freg-struct-return, GCC defaults to whichever convention is
           standard for the target.  If there is no standard convention,
           GCC defaults to -fpcc-struct-return, except on targets where
           GCC is the principal compiler.  In those cases, we can choose
           the standard, and we chose the more efficient register return
           alternative.

           Warning: code compiled with the -freg-struct-return switch is
           not binary compatible with code compiled with the
           -fpcc-struct-return switch.  Use it to conform to a non-
           default application binary interface.

       -fshort-enums
           Allocate to an "enum" type only as many bytes as it needs for
           the declared range of possible values.  Specifically, the
           "enum" type is equivalent to the smallest integer type that
           has enough room.

           Warning: the -fshort-enums switch causes GCC to generate code
           that is not binary compatible with code generated without
           that switch.  Use it to conform to a non-default application
           binary interface.

       -fshort-wchar
           Override the underlying type for "wchar_t" to be "short
           unsigned int" instead of the default for the target.  This
           option is useful for building programs to run under WINE.

           Warning: the -fshort-wchar switch causes GCC to generate code
           that is not binary compatible with code generated without
           that switch.  Use it to conform to a non-default application
           binary interface.

       -fno-common
           In C code, this option controls the placement of global
           variables defined without an initializer, known as tentative
           definitions in the C standard.  Tentative definitions are
           distinct from declarations of a variable with the "extern"
           keyword, which do not allocate storage.

           Unix C compilers have traditionally allocated storage for
           uninitialized global variables in a common block.  This
           allows the linker to resolve all tentative definitions of the
           same variable in different compilation units to the same
           object, or to a non-tentative definition.  This is the
           behavior specified by -fcommon, and is the default for GCC on
           most targets.  On the other hand, this behavior is not
           required by ISO C, and on some targets may carry a speed or
           code size penalty on variable references.

           The -fno-common option specifies that the compiler should
           instead place uninitialized global variables in the BSS
           section of the object file.  This inhibits the merging of
           tentative definitions by the linker so you get a multiple-
           definition error if the same variable is defined in more than
           one compilation unit.  Compiling with -fno-common is useful
           on targets for which it provides better performance, or if
           you wish to verify that the program will work on other
           systems that always treat uninitialized variable definitions
           this way.

       -fno-ident
           Ignore the "#ident" directive.

       -finhibit-size-directive
           Don't output a ".size" assembler directive, or anything else
           that would cause trouble if the function is split in the
           middle, and the two halves are placed at locations far apart
           in memory.  This option is used when compiling crtstuff.c;
           you should not need to use it for anything else.

       -fverbose-asm
           Put extra commentary information in the generated assembly
           code to make it more readable.  This option is generally only
           of use to those who actually need to read the generated
           assembly code (perhaps while debugging the compiler itself).

           -fno-verbose-asm, the default, causes the extra information
           to be omitted and is useful when comparing two assembler
           files.

           The added comments include:

           *   information on the compiler version and command-line
               options,

           *   the source code lines associated with the assembly
               instructions, in the form FILENAME:LINENUMBER:CONTENT OF
               LINE,

           *   hints on which high-level expressions correspond to the
               various assembly instruction operands.

           For example, given this C source file:

                   int test (int n)
                   {
                     int i;
                     int total = 0;

                     for (i = 0; i < n; i++)
                       total += i * i;

                     return total;
                   }

           compiling to (x86_64) assembly via -S and emitting the result
           direct to stdout via -o -

                   gcc -S test.c -fverbose-asm -Os -o -

           gives output similar to this:

                           .file   "test.c"
                   # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
                     [...snip...]
                   # options passed:
                     [...snip...]

                           .text
                           .globl  test
                           .type   test, @function
                   test:
                   .LFB0:
                           .cfi_startproc
                   # test.c:4:   int total = 0;
                           xorl    %eax, %eax      # <retval>
                   # test.c:6:   for (i = 0; i < n; i++)
                           xorl    %edx, %edx      # i
                   .L2:
                   # test.c:6:   for (i = 0; i < n; i++)
                           cmpl    %edi, %edx      # n, i
                           jge     .L5     #,
                   # test.c:7:     total += i * i;
                           movl    %edx, %ecx      # i, tmp92
                           imull   %edx, %ecx      # i, tmp92
                   # test.c:6:   for (i = 0; i < n; i++)
                           incl    %edx    # i
                   # test.c:7:     total += i * i;
                           addl    %ecx, %eax      # tmp92, <retval>
                           jmp     .L2     #
                   .L5:
                   # test.c:10: }
                           ret
                           .cfi_endproc
                   .LFE0:
                           .size   test, .-test
                           .ident  "GCC: (GNU) 7.0.0 20160809 (experimental)"
                           .section        .note.GNU-stack,"",@progbits

           The comments are intended for humans rather than machines and
           hence the precise format of the comments is subject to
           change.

       -frecord-gcc-switches
           This switch causes the command line used to invoke the
           compiler to be recorded into the object file that is being
           created.  This switch is only implemented on some targets and
           the exact format of the recording is target and binary file
           format dependent, but it usually takes the form of a section
           containing ASCII text.  This switch is related to the
           -fverbose-asm switch, but that switch only records
           information in the assembler output file as comments, so it
           never reaches the object file.  See also
           -grecord-gcc-switches for another way of storing compiler
           options into the object file.

       -fpic
           Generate position-independent code (PIC) suitable for use in
           a shared library, if supported for the target machine.  Such
           code accesses all constant addresses through a global offset
           table (GOT).  The dynamic loader resolves the GOT entries
           when the program starts (the dynamic loader is not part of
           GCC; it is part of the operating system).  If the GOT size
           for the linked executable exceeds a machine-specific maximum
           size, you get an error message from the linker indicating
           that -fpic does not work; in that case, recompile with -fPIC
           instead.  (These maximums are 8k on the SPARC, 28k on AArch64
           and 32k on the m68k and RS/6000.  The x86 has no such limit.)

           Position-independent code requires special support, and
           therefore works only on certain machines.  For the x86, GCC
           supports PIC for System V but not for the Sun 386i.  Code
           generated for the IBM RS/6000 is always position-independent.

           When this flag is set, the macros "__pic__" and "__PIC__" are
           defined to 1.

       -fPIC
           If supported for the target machine, emit position-
           independent code, suitable for dynamic linking and avoiding
           any limit on the size of the global offset table.  This
           option makes a difference on AArch64, m68k, PowerPC and
           SPARC.

           Position-independent code requires special support, and
           therefore works only on certain machines.

           When this flag is set, the macros "__pic__" and "__PIC__" are
           defined to 2.

       -fpie
       -fPIE
           These options are similar to -fpic and -fPIC, but the
           generated position-independent code can be only linked into
           executables.  Usually these options are used to compile code
           that will be linked using the -pie GCC option.

           -fpie and -fPIE both define the macros "__pie__" and
           "__PIE__".  The macros have the value 1 for -fpie and 2 for
           -fPIE.

       -fno-plt
           Do not use the PLT for external function calls in position-
           independent code.  Instead, load the callee address at call
           sites from the GOT and branch to it.  This leads to more
           efficient code by eliminating PLT stubs and exposing GOT
           loads to optimizations.  On architectures such as 32-bit x86
           where PLT stubs expect the GOT pointer in a specific
           register, this gives more register allocation freedom to the
           compiler.  Lazy binding requires use of the PLT; with
           -fno-plt all external symbols are resolved at load time.

           Alternatively, the function attribute "noplt" can be used to
           avoid calls through the PLT for specific external functions.

           In position-dependent code, a few targets also convert calls
           to functions that are marked to not use the PLT to use the
           GOT instead.

       -fno-jump-tables
           Do not use jump tables for switch statements even where it
           would be more efficient than other code generation
           strategies.  This option is of use in conjunction with -fpic
           or -fPIC for building code that forms part of a dynamic
           linker and cannot reference the address of a jump table.  On
           some targets, jump tables do not require a GOT and this
           option is not needed.

       -ffixed-reg
           Treat the register named reg as a fixed register; generated
           code should never refer to it (except perhaps as a stack
           pointer, frame pointer or in some other fixed role).

           reg must be the name of a register.  The register names
           accepted are machine-specific and are defined in the
           "REGISTER_NAMES" macro in the machine description macro file.

           This flag does not have a negative form, because it specifies
           a three-way choice.

       -fcall-used-reg
           Treat the register named reg as an allocable register that is
           clobbered by function calls.  It may be allocated for
           temporaries or variables that do not live across a call.
           Functions compiled this way do not save and restore the
           register reg.

           It is an error to use this flag with the frame pointer or
           stack pointer.  Use of this flag for other registers that
           have fixed pervasive roles in the machine's execution model
           produces disastrous results.

           This flag does not have a negative form, because it specifies
           a three-way choice.

       -fcall-saved-reg
           Treat the register named reg as an allocable register saved
           by functions.  It may be allocated even for temporaries or
           variables that live across a call.  Functions compiled this
           way save and restore the register reg if they use it.

           It is an error to use this flag with the frame pointer or
           stack pointer.  Use of this flag for other registers that
           have fixed pervasive roles in the machine's execution model
           produces disastrous results.

           A different sort of disaster results from the use of this
           flag for a register in which function values may be returned.

           This flag does not have a negative form, because it specifies
           a three-way choice.

       -fpack-struct[=n]
           Without a value specified, pack all structure members
           together without holes.  When a value is specified (which
           must be a small power of two), pack structure members
           according to this value, representing the maximum alignment
           (that is, objects with default alignment requirements larger
           than this are output potentially unaligned at the next
           fitting location.

           Warning: the -fpack-struct switch causes GCC to generate code
           that is not binary compatible with code generated without
           that switch.  Additionally, it makes the code suboptimal.
           Use it to conform to a non-default application binary
           interface.

       -fleading-underscore
           This option and its counterpart, -fno-leading-underscore,
           forcibly change the way C symbols are represented in the
           object file.  One use is to help link with legacy assembly
           code.

           Warning: the -fleading-underscore switch causes GCC to
           generate code that is not binary compatible with code
           generated without that switch.  Use it to conform to a non-
           default application binary interface.  Not all targets
           provide complete support for this switch.

       -ftls-model=model
           Alter the thread-local storage model to be used.  The model
           argument should be one of global-dynamic, local-dynamic,
           initial-exec or local-exec.  Note that the choice is subject
           to optimization: the compiler may use a more efficient model
           for symbols not visible outside of the translation unit, or
           if -fpic is not given on the command line.

           The default without -fpic is initial-exec; with -fpic the
           default is global-dynamic.

       -ftrampolines
           For targets that normally need trampolines for nested
           functions, always generate them instead of using descriptors.
           Otherwise, for targets that do not need them, like for
           example HP-PA or IA-64, do nothing.

           A trampoline is a small piece of code that is created at run
           time on the stack when the address of a nested function is
           taken, and is used to call the nested function indirectly.
           Therefore, it requires the stack to be made executable in
           order for the program to work properly.

           -fno-trampolines is enabled by default on a language by
           language basis to let the compiler avoid generating them, if
           it computes that this is safe, and replace them with
           descriptors.  Descriptors are made up of data only, but the
           generated code must be prepared to deal with them.  As of
           this writing, -fno-trampolines is enabled by default only for
           Ada.

           Moreover, code compiled with -ftrampolines and code compiled
           with -fno-trampolines are not binary compatible if nested
           functions are present.  This option must therefore be used on
           a program-wide basis and be manipulated with extreme care.

       -fvisibility=[default|internal|hidden|protected]
           Set the default ELF image symbol visibility to the specified
           option---all symbols are marked with this unless overridden
           within the code.  Using this feature can very substantially
           improve linking and load times of shared object libraries,
           produce more optimized code, provide near-perfect API export
           and prevent symbol clashes.  It is strongly recommended that
           you use this in any shared objects you distribute.

           Despite the nomenclature, default always means public; i.e.,
           available to be linked against from outside the shared
           object.  protected and internal are pretty useless in real-
           world usage so the only other commonly used option is hidden.
           The default if -fvisibility isn't specified is default, i.e.,
           make every symbol public.

           A good explanation of the benefits offered by ensuring ELF
           symbols have the correct visibility is given by "How To Write
           Shared Libraries" by Ulrich Drepper (which can be found at
           <https://www.akkadia.org/drepper/ >)---however a superior
           solution made possible by this option to marking things
           hidden when the default is public is to make the default
           hidden and mark things public.  This is the norm with DLLs on
           Windows and with -fvisibility=hidden and "__attribute__
           ((visibility("default")))" instead of "__declspec(dllexport)"
           you get almost identical semantics with identical syntax.
           This is a great boon to those working with cross-platform
           projects.

           For those adding visibility support to existing code, you may
           find "#pragma GCC visibility" of use.  This works by you
           enclosing the declarations you wish to set visibility for
           with (for example) "#pragma GCC visibility push(hidden)" and
           "#pragma GCC visibility pop".  Bear in mind that symbol
           visibility should be viewed as part of the API interface
           contract and thus all new code should always specify
           visibility when it is not the default; i.e., declarations
           only for use within the local DSO should always be marked
           explicitly as hidden as so to avoid PLT indirection
           overheads---making this abundantly clear also aids
           readability and self-documentation of the code.  Note that
           due to ISO C++ specification requirements, "operator new" and
           "operator delete" must always be of default visibility.

           Be aware that headers from outside your project, in
           particular system headers and headers from any other library
           you use, may not be expecting to be compiled with visibility
           other than the default.  You may need to explicitly say
           "#pragma GCC visibility push(default)" before including any
           such headers.

           "extern" declarations are not affected by -fvisibility, so a
           lot of code can be recompiled with -fvisibility=hidden with
           no modifications.  However, this means that calls to "extern"
           functions with no explicit visibility use the PLT, so it is
           more effective to use "__attribute ((visibility))" and/or
           "#pragma GCC visibility" to tell the compiler which "extern"
           declarations should be treated as hidden.

           Note that -fvisibility does affect C++ vague linkage
           entities. This means that, for instance, an exception class
           that is be thrown between DSOs must be explicitly marked with
           default visibility so that the type_info nodes are unified
           between the DSOs.

           An overview of these techniques, their benefits and how to
           use them is at <http://gcc.gnu.org/wiki/Visibility >.

       -fstrict-volatile-bitfields
           This option should be used if accesses to volatile bit-fields
           (or other structure fields, although the compiler usually
           honors those types anyway) should use a single access of the
           width of the field's type, aligned to a natural alignment if
           possible.  For example, targets with memory-mapped peripheral
           registers might require all such accesses to be 16 bits wide;
           with this flag you can declare all peripheral bit-fields as
           "unsigned short" (assuming short is 16 bits on these targets)
           to force GCC to use 16-bit accesses instead of, perhaps, a
           more efficient 32-bit access.

           If this option is disabled, the compiler uses the most
           efficient instruction.  In the previous example, that might
           be a 32-bit load instruction, even though that accesses bytes
           that do not contain any portion of the bit-field, or memory-
           mapped registers unrelated to the one being updated.

           In some cases, such as when the "packed" attribute is applied
           to a structure field, it may not be possible to access the
           field with a single read or write that is correctly aligned
           for the target machine.  In this case GCC falls back to
           generating multiple accesses rather than code that will fault
           or truncate the result at run time.

           Note:  Due to restrictions of the C/C++11 memory model, write
           accesses are not allowed to touch non bit-field members.  It
           is therefore recommended to define all bits of the field's
           type as bit-field members.

           The default value of this option is determined by the
           application binary interface for the target processor.

       -fsync-libcalls
           This option controls whether any out-of-line instance of the
           "__sync" family of functions may be used to implement the
           C++11 "__atomic" family of functions.

           The default value of this option is enabled, thus the only
           useful form of the option is -fno-sync-libcalls.  This option
           is used in the implementation of the libatomic runtime
           library.