Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   regexec.3p    ( 3 )

соответствие регулярному выражению (regular expression matching)

Обоснование (Rationale)

The regexec() function must fill in all nmatch elements of pmatch, where nmatch and pmatch are supplied by the application, even if some elements of pmatch do not correspond to subexpressions in pattern. The application developer should note that there is probably no reason for using a value of nmatch that is larger than preg->re_nsub+1.

The REG_NEWLINE flag supports a use of RE matching that is needed in some applications like text editors. In such applications, the user supplies an RE asking the application to find a line that matches the given expression. An anchor in such an RE anchors at the beginning or end of any line. Such an application can pass a sequence of <newline>-separated lines to regexec() as a single long string and specify REG_NEWLINE to regcomp() to get the desired behavior. The application must ensure that there are no explicit <newline> characters in pattern if it wants to ensure that any match occurs entirely within a single line.

The REG_NEWLINE flag affects the behavior of regexec(), but it is in the cflags parameter to regcomp() to allow flexibility of implementation. Some implementations will want to generate the same compiled RE in regcomp() regardless of the setting of REG_NEWLINE and have regexec() handle anchors differently based on the setting of the flag. Other implementations will generate different compiled REs based on the REG_NEWLINE.

The REG_ICASE flag supports the operations taken by the grep -i option and the historical implementations of ex and vi. Including this flag will make it easier for application code to be written that does the same thing as these utilities.

The substrings reported in pmatch[] are defined using offsets from the start of the string rather than pointers. This allows type-safe access to both constant and non-constant strings.

The type regoff_t is used for the elements of pmatch[] to ensure that the application can represent large arrays in memory (important for an application conforming to the Shell and Utilities volume of POSIX.1‐2017).

The 1992 edition of this standard required regoff_t to be at least as wide as off_t, to facilitate future extensions in which the string to be searched is taken from a file. However, these future extensions have not appeared. The requirement rules out popular implementations with 32-bit regoff_t and 64-bit off_t, so it has been removed.

The standard developers rejected the inclusion of a regsub() function that would be used to do substitutions for a matched RE. While such a routine would be useful to some applications, its utility would be much more limited than the matching function described here. Both RE parsing and substitution are possible to implement without support other than that required by the ISO C standard, but matching is much more complex than substituting. The only difficult part of substitution, given the information supplied by regexec(), is finding the next character in a string when there can be multi-byte characters. That is a much larger issue, and one that needs a more general solution.

The errno variable has not been used for error returns to avoid filling the errno name space for this feature.

The interface is defined so that the matched substrings rm_sp and rm_ep are in a separate regmatch_t structure instead of in regex_t. This allows a single compiled RE to be used simultaneously in several contexts; in main() and a signal handler, perhaps, or in multiple threads of lightweight processes. (The preg argument to regexec() is declared with type const, so the implementation is not permitted to use the structure to store intermediate results.) It also allows an application to request an arbitrary number of substrings from an RE. The number of subexpressions in the RE is reported in re_nsub in preg. With this change to regexec(), consideration was given to dropping the REG_NOSUB flag since the user can now specify this with a zero nmatch argument to regexec(). However, keeping REG_NOSUB allows an implementation to use a different (perhaps more efficient) algorithm if it knows in regcomp() that no subexpressions need be reported. The implementation is only required to fill in pmatch if nmatch is not zero and if REG_NOSUB is not specified. Note that the size_t type, as defined in the ISO C standard, is unsigned, so the description of regexec() does not need to address negative values of nmatch.

REG_NOTBOL was added to allow an application to do repeated searches for the same pattern in a line. If the pattern contains a <circumflex> character that should match the beginning of a line, then the pattern should only match when matched against the beginning of the line. Without the REG_NOTBOL flag, the application could rewrite the expression for subsequent matches, but in the general case this would require parsing the expression. The need for REG_NOTEOL is not as clear; it was added for symmetry.

The addition of the regerror() function addresses the historical need for conforming application programs to have access to error information more than ``Function failed to compile/match your RE for unknown reasons''.

This interface provides for two different methods of dealing with error conditions. The specific error codes (REG_EBRACE, for example), defined in <regex.h>, allow an application to recover from an error if it is so able. Many applications, especially those that use patterns supplied by a user, will not try to deal with specific error cases, but will just use regerror() to obtain a human-readable error message to present to the user.

The regerror() function uses a scheme similar to confstr() to deal with the problem of allocating memory to hold the generated string. The scheme used by strerror() in the ISO C standard was considered unacceptable since it creates difficulties for multi- threaded applications.

The preg argument is provided to regerror() to allow an implementation to generate a more descriptive message than would be possible with errcode alone. An implementation might, for example, save the character offset of the offending character of the pattern in a field of preg, and then include that in the generated message string. The implementation may also ignore preg.

A REG_FILENAME flag was considered, but omitted. This flag caused regexec() to match patterns as described in the Shell and Utilities volume of POSIX.1‐2017, Section 2.13, Pattern Matching Notation instead of REs. This service is now provided by the fnmatch() function.

Notice that there is a difference in philosophy between the ISO POSIX‐2:1993 standard and POSIX.1‐2008 in how to handle a ``bad'' regular expression. The ISO POSIX‐2:1993 standard says that many bad constructs ``produce undefined results'', or that ``the interpretation is undefined''. POSIX.1‐2008, however, says that the interpretation of such REs is unspecified. The term ``undefined'' means that the action by the application is an error, of similar severity to passing a bad pointer to a function.

The regcomp() and regexec() functions are required to accept any null-terminated string as the pattern argument. If the meaning of the string is ``undefined'', the behavior of the function is ``unspecified''. POSIX.1‐2008 does not specify how the functions will interpret the pattern; they might return error codes, or they might do pattern matching in some completely unexpected way, but they should not do something like abort the process.