newfs_msdos - исходный текст
#include <sys/param.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <sys/ioctl.h>
#include <sys/disk.h>
#include <ctype.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <paths.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <wipefs.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/storage/IOStorageCardCharacteristics.h>
/* ioctl selector to get the offset of the current partition
* from the start of the disk to initialize hidden sectors
* value in the boot sector.
*
* Note: This ioctl selector is not available in userspace
* and we are assuming its existence by defining it here.
* This behavior can change in future.
*/
#ifndef DKIOCGETBASE
#define DKIOCGETBASE _IOR('d', 73, uint64_t)
#endif
#define MAXU16 0xffff /* maximum unsigned 16-bit quantity */
#define BPN 4 /* bits per nibble */
#define NPB 2 /* nibbles per byte */
#define DOSMAGIC 0xaa55 /* DOS magic number */
#define MINBPS 128 /* minimum bytes per sector */
#define MAXBPS 4096 /* maximum bytes per sector */
#define MAXSPC 128 /* maximum sectors per cluster */
#define MAXNFT 16 /* maximum number of FATs */
#define DEFBLK 4096 /* default block size */
#define DEFBLK16 2048 /* default block size FAT16 */
#define DEFRDE 512 /* default root directory entries */
#define RESFTE 2 /* reserved FAT entries */
/*
* The size of our in-memory I/O buffer. This is the size of the writes we
* do to the device (except perhaps a few odd sectors at the end).
*
* This must be a multiple of the sector size. Larger is generally faster,
* but some old devices have bugs if you ask them to do more than 128KB
* per I/O.
*/
#define IO_BUFFER_SIZE (128*1024)
/*
* [2873845] FAT12 volumes can have 1..4084 clusters. FAT16 can have
* 4085..65524 clusters. FAT32 is 65525 clusters or more.
* Since many other implementations are off by 1, 2, 4, 8, 10, or 16,
* Microsoft recommends staying at least 16 clusters away from these
* boundary points. They also recommend that FAT32 volumes avoid
* making the bad cluster mark an allocatable cluster number.
*
* So, the minimum and maximum values listed below aren't the strict
* limits (smaller or larger values may work on more robust implementations).
* The limits below are safe limits that should be compatible with a
* wide variety of implementations.
*/
#define MINCLS12 1 /* minimum FAT12 clusters */
#define MINCLS16 4085 /* minimum FAT16 clusters */
#define MINCLS32 65525 /* minimum FAT32 clusters */
#define MAXCLS12 4084 /* maximum FAT12 clusters */
#define MAXCLS16 65524 /* maximum FAT16 clusters */
#define MAXCLS32 0x0FFFFFF5 /* maximum FAT32 clusters */
#define BACKUP_BOOT_SECTOR 6 /* Default location for backup boot sector on FAT32 */
#define FAT32_RESERVED_SECTORS 32
#define mincls(fat) ((fat) == 12 ? MINCLS12 : \
(fat) == 16 ? MINCLS16 : \
MINCLS32)
#define maxcls(fat) ((fat) == 12 ? MAXCLS12 : \
(fat) == 16 ? MAXCLS16 : \
MAXCLS32)
#define mk1(p, x) \
(p) = (u_int8_t)(x)
#define mk2(p, x) \
(p)[0] = (u_int8_t)(x), \
(p)[1] = (u_int8_t)((x) >> 010)
#define mk4(p, x) \
(p)[0] = (u_int8_t)(x), \
(p)[1] = (u_int8_t)((x) >> 010), \
(p)[2] = (u_int8_t)((x) >> 020), \
(p)[3] = (u_int8_t)((x) >> 030)
#define argto1(arg, lo, msg) argtou(arg, lo, 0xff, msg)
#define argto2(arg, lo, msg) argtou(arg, lo, 0xffff, msg)
#define argto4(arg, lo, msg) argtou(arg, lo, 0xffffffff, msg)
#define argtox(arg, lo, msg) argtou(arg, lo, UINT_MAX, msg)
struct bs {
u_int8_t jmp[3]; /* bootstrap entry point */
u_int8_t oem[8]; /* OEM name and version */
};
struct bsbpb {
u_int8_t bps[2]; /* bytes per sector */
u_int8_t spc; /* sectors per cluster */
u_int8_t res[2]; /* reserved sectors */
u_int8_t nft; /* number of FATs */
u_int8_t rde[2]; /* root directory entries */
u_int8_t sec[2]; /* total sectors */
u_int8_t mid; /* media descriptor */
u_int8_t spf[2]; /* sectors per FAT */
u_int8_t spt[2]; /* sectors per track */
u_int8_t hds[2]; /* drive heads */
u_int8_t hid[4]; /* hidden sectors */
u_int8_t bsec[4]; /* big total sectors */
};
struct bsxbpb {
u_int8_t bspf[4]; /* big sectors per FAT */
u_int8_t xflg[2]; /* FAT control flags */
u_int8_t vers[2]; /* file system version */
u_int8_t rdcl[4]; /* root directory start cluster */
u_int8_t infs[2]; /* file system info sector */
u_int8_t bkbs[2]; /* backup boot sector */
u_int8_t rsvd[12]; /* reserved */
};
struct bsx {
u_int8_t drv; /* drive number */
u_int8_t rsvd; /* reserved */
u_int8_t sig; /* extended boot signature */
u_int8_t volid[4]; /* volume ID number */
u_int8_t label[11]; /* volume label */
u_int8_t type[8]; /* file system type */
};
struct de {
u_int8_t namext[11]; /* name and extension */
u_int8_t attr; /* attributes */
u_int8_t rsvd[10]; /* reserved */
u_int8_t time[2]; /* creation time */
u_int8_t date[2]; /* creation date */
u_int8_t clus[2]; /* starting cluster */
u_int8_t size[4]; /* size */
};
struct bpb {
u_int bps; /* bytes per sector */
u_int spc; /* sectors per cluster */
u_int res; /* reserved sectors */
u_int nft; /* number of FATs */
u_int rde; /* root directory entries */
u_int sec; /* total sectors */
u_int mid; /* media descriptor */
u_int spf; /* sectors per FAT */
u_int spt; /* sectors per track */
u_int hds; /* drive heads */
u_int hid; /* hidden sectors */
u_int bsec; /* big total sectors */
u_int bspf; /* big sectors per FAT */
u_int rdcl; /* root directory start cluster */
u_int infs; /* file system info sector */
u_int bkbs; /* backup boot sector */
u_int driveNum; /* INT 0x13 drive number (0x00 or 0x80) */
};
static struct {
const char *name;
struct bpb bpb;
} stdfmt[] = {
{"160", {512, 1, 1, 2, 64, 320, 0xfe, 1, 8, 1}},
{"180", {512, 1, 1, 2, 64, 360, 0xfc, 2, 9, 1}},
{"320", {512, 2, 1, 2, 112, 640, 0xff, 1, 8, 2}},
{"360", {512, 2, 1, 2, 112, 720, 0xfd, 2, 9, 2}},
{"640", {512, 2, 1, 2, 112, 1280, 0xfb, 2, 8, 2}},
{"720", {512, 2, 1, 2, 112, 1440, 0xf9, 3, 9, 2}},
{"1200", {512, 1, 1, 2, 224, 2400, 0xf9, 7, 15, 2}},
{"1232", {1024,1, 1, 2, 192, 1232, 0xfe, 2, 8, 2}},
{"1440", {512, 1, 1, 2, 224, 2880, 0xf0, 9, 18, 2}},
{"2880", {512, 2, 1, 2, 240, 5760, 0xf0, 9, 36, 2}}
};
static u_int8_t bootcode[] = {
0xfa, /* cli */
0x31, 0xc0, /* xor ax,ax */
0x8e, 0xd0, /* mov ss,ax */
0xbc, 0x00, 0x7c, /* mov sp,7c00h */
0xfb, /* sti */
0x8e, 0xd8, /* mov ds,ax */
0xe8, 0x00, 0x00, /* call $ + 3 */
0x5e, /* pop si */
0x83, 0xc6, 0x19, /* add si,+19h */
0xbb, 0x07, 0x00, /* mov bx,0007h */
0xfc, /* cld */
0xac, /* lodsb */
0x84, 0xc0, /* test al,al */
0x74, 0x06, /* jz $ + 8 */
0xb4, 0x0e, /* mov ah,0eh */
0xcd, 0x10, /* int 10h */
0xeb, 0xf5, /* jmp $ - 9 */
0x30, 0xe4, /* xor ah,ah */
0xcd, 0x16, /* int 16h */
0xcd, 0x19, /* int 19h */
0x0d, 0x0a,
'N', 'o', 'n', '-', 's', 'y', 's', 't',
'e', 'm', ' ', 'd', 'i', 's', 'k',
0x0d, 0x0a,
'P', 'r', 'e', 's', 's', ' ', 'a', 'n',
'y', ' ', 'k', 'e', 'y', ' ', 't', 'o',
' ', 'r', 'e', 'b', 'o', 'o', 't',
0x0d, 0x0a,
0
};
/*
* These values define the default crossover points for selecting the default
* FAT type. The intent here is to have the crossover points be the same as
* Microsoft documents, at least for 512 bytes per sector devices. As much
* as possible, the same crossover point (in terms of bytes per volume) is used
* for larger sector sizes. But the 4.1MB crossover between FAT12 and FAT16
* is not achievable for sector sizes larger than 1KB since it would result
* in fewer than 4085 clusters, making FAT16 impossible; in that case, the
* crossover is in terms of sectors, not bytes.
*
* Note that the FAT16 to FAT32 crossover is only good for sector sizes up to
* and including 4KB. For larger sector sizes, there would be too few clusters
* for FAT32.
*/
enum {
MAX_SEC_FAT12_512 = 8400, /* (4.1 MB) Maximum 512 byte sectors to default to FAT12 */
MAX_SEC_FAT12 = 4200, /* Maximum sectors (>512 bytes) to default to FAT12 */
MAX_KB_FAT16 = 524288 /* (512 MiB) Maximum kilobytes to default to FAT16 */
};
/*
* [2873851] Tables of default cluster sizes for FAT16 and FAT32.
*
* These constants are derived from Microsoft's documentation, but adjusted
* to represent kilobytes of volume size, not a number of 512-byte sectors.
* Also, this table uses default cluster size, not sectors per cluster, so
* that it can be independent of sector size.
*/
struct DiskSizeToClusterSize {
u_int32_t kilobytes; /* input: maximum kilobytes */
u_int32_t bytes_per_cluster; /* output: desired cluster size (in bytes) */
};
struct DiskSizeToClusterSize fat16Sizes[] = {
{ 4200, 0}, /* Disks up to 4.1 MB; the 0 triggers an error */
{ 16340, 1024}, /* Disks up to 16 MB => 1 KB cluster */
{ 131072, 2048}, /* Disks up to 128 MB => 2 KB cluster */
{ 262144, 4096}, /* Disks up to 256 MB => 4 KB cluster */
{ 524288, 8192}, /* Disks up to 512 MB => 8 KB cluster */
/* The following entries are used only if FAT16 is forced */
{1048576, 16384}, /* Disks up to 1 GB => 16 KB cluster */
{UINT32_MAX, 32768} /* Disks over 2 GB => 32KB cluster (total size may be limited) */
};
struct DiskSizeToClusterSize fat32Sizes[] = {
{ 33300, 0}, /* Disks up to 32.5 MB; the 0 triggers an error */
{ 266240, 512}, /* Disks up to 260 MB => 512 byte cluster; not used unles FAT32 forced */
{ 8388608, 4096}, /* Disks up to 8 GB => 4 KB cluster */
{16777216, 8192}, /* Disks up to 16 GB => 8 KB cluster */
{33554432, 16384}, /* Disks up to 32 GB => 16 KB cluster */
{UINT32_MAX, 32768} /* Disks over 32 GB => 32 KB cluster */
};
enum SDCardType {
kCardTypeNone = 0,
kCardTypeSDSC,
kCardTypeSDHC,
kCardTypeSDXC
};
static void check_mounted(const char *, mode_t);
static void getstdfmt(const char *, struct bpb *);
static void getdiskinfo(int, const char *, const char *, int,
struct bpb *);
static enum SDCardType sd_card_type_for_path(const char *path);
static void sd_card_set_defaults(const char *path, u_int *fat, struct bpb *bpb);
static void print_bpb(struct bpb *);
static u_int argtou(const char *, u_int, u_int, const char *);
static int oklabel(const char *);
static void mklabel(u_int8_t *, const char *);
static void setstr(u_int8_t *, const char *, size_t);
static void usage(void);
/*
* Construct a FAT12, FAT16, or FAT32 file system.
*/
int
main(int argc, char *argv[])
{
static char opts[] = "NB:F:I:O:S:P:a:b:c:e:f:h:i:k:m:n:o:r:s:u:v:";
static const char *opt_B, *opt_v, *opt_O, *opt_f;
static u_int opt_F, opt_I, opt_S, opt_a, opt_b, opt_c, opt_e;
static u_int opt_h, opt_i, opt_k, opt_m, opt_n, opt_o, opt_r;
static u_int opt_s, opt_u, opt_P;
static int opt_N;
static int Iflag, mflag, oflag;
char buf[MAXPATHLEN];
struct stat sb;
struct timeval tv;
struct bpb bpb;
struct tm *tm;
struct bs *bs;
struct bsbpb *bsbpb;
struct bsxbpb *bsxbpb;
struct bsx *bsx;
struct de *de;
u_int8_t *bpb_buffer;
u_int8_t *io_buffer; /* The buffer for sectors being constructed/written */
u_int8_t *img; /* Current sector within io_buffer */
const char *fname, *dtype, *bname;
ssize_t n;
time_t now;
u_int fat, bss, rds, cls, dir, lsn, x, x1, x2;
int ch, fd, fd1;
while ((ch = getopt(argc, argv, opts)) != -1)
switch (ch) {
case 'N':
opt_N = 1;
break;
case 'B':
opt_B = optarg;
break;
case 'F':
if (strcmp(optarg, "12") &&
strcmp(optarg, "16") &&
strcmp(optarg, "32"))
errx(1, "%s: bad FAT type", optarg);
opt_F = atoi(optarg);
break;
case 'I':
opt_I = argto4(optarg, 0, "volume ID");
Iflag = 1;
break;
case 'O':
if (strlen(optarg) > 8)
errx(1, "%s: bad OEM string", optarg);
opt_O = optarg;
break;
case 'S':
opt_S = argto2(optarg, 1, "bytes/sector");
break;
case 'P':
opt_P = argto2(optarg, 1, "physical bytes/sector");
break;
case 'a':
opt_a = argto4(optarg, 1, "sectors/FAT");
break;
case 'b':
opt_b = argtox(optarg, 1, "block size");
opt_c = 0;
break;
case 'c':
opt_c = argto1(optarg, 1, "sectors/cluster");
opt_b = 0;
break;
case 'e':
opt_e = argto2(optarg, 1, "directory entries");
break;
case 'f':
opt_f = optarg;
break;
case 'h':
opt_h = argto2(optarg, 1, "drive heads");
break;
case 'i':
opt_i = argto2(optarg, 1, "info sector");
break;
case 'k':
opt_k = argto2(optarg, 1, "backup sector");
break;
case 'm':
opt_m = argto1(optarg, 0, "media descriptor");
mflag = 1;
break;
case 'n':
opt_n = argto1(optarg, 1, "number of FATs");
break;
case 'o':
opt_o = argto4(optarg, 0, "hidden sectors");
oflag = 1;
break;
case 'r':
opt_r = argto2(optarg, 1, "reserved sectors");
break;
case 's':
opt_s = argto4(optarg, 1, "file system size (in sectors)");
break;
case 'u':
opt_u = argto2(optarg, 1, "sectors/track");
break;
case 'v':
if (!oklabel(optarg))
errx(1, "%s: bad volume name", optarg);
opt_v = optarg;
break;
default:
usage();
}
argc -= optind;
argv += optind;
if (argc < 1 || argc > 2)
usage();
fname = *argv++;
if (!strchr(fname, '/')) {
snprintf(buf, sizeof(buf), "%sr%s", _PATH_DEV, fname);
if (stat(buf, &sb))
snprintf(buf, sizeof(buf), "%s%s", _PATH_DEV, fname);
if (!(fname = strdup(buf)))
err(1, NULL);
}
dtype = *argv;
if ((fd = open(fname, opt_N ? O_RDONLY : O_RDWR)) == -1 ||
fstat(fd, &sb))
err(1, "%s", fname);
if (!opt_N)
check_mounted(fname, sb.st_mode);
if (!S_ISCHR(sb.st_mode))
warnx("warning: %s is not a character device", fname);
memset(&bpb, 0, sizeof(bpb));
if (opt_f) {
getstdfmt(opt_f, &bpb);
bpb.bsec = bpb.sec;
bpb.sec = 0;
bpb.bspf = bpb.spf;
bpb.spf = 0;
}
if (opt_h)
bpb.hds = opt_h;
if (opt_u)
bpb.spt = opt_u;
if (opt_S)
bpb.bps = opt_S;
if (opt_s)
bpb.bsec = opt_s;
if (oflag)
bpb.hid = opt_o;
if (!(opt_f || (opt_h && opt_u && opt_S && opt_s && oflag)))
getdiskinfo(fd, fname, dtype, oflag, &bpb);
if (!powerof2(bpb.bps))
errx(1, "bytes/sector (%u) is not a power of 2", bpb.bps);
if (bpb.bps < MINBPS)
errx(1, "bytes/sector (%u) is too small; minimum is %u",
bpb.bps, MINBPS);
if (bpb.bps > MAXBPS)
errx(1, "bytes/sector (%u) is too large; maximum is %u",
bpb.bps, MAXBPS);
if (opt_P != 0 && !powerof2(opt_P))
errx(1, "physical bytes/sector (%u) is not a power of 2", opt_P);
if (opt_P != 0 && opt_P < bpb.bps)
errx(1, "physical bytes/sector (%u) is less than logical bytes/sector (%u)", opt_P, bpb.bps);
if (opt_P == 0) {
uint32_t phys_block_size;
if (ioctl(fd, DKIOCGETPHYSICALBLOCKSIZE, &phys_block_size) == -1) {
printf("ioctl(DKIOCGETPHYSICALBLOCKSIZE) not supported\n");
opt_P = bpb.bps;
} else {
printf("%u bytes per physical sector\n", phys_block_size);
opt_P = phys_block_size;
}
}
if (!(fat = opt_F)) {
if (opt_f)
fat = 12;
else if (!opt_e && (opt_i || opt_k))
fat = 32;
}
if ((fat == 32 && opt_e) || (fat != 32 && (opt_i || opt_k)))
errx(1, "-%c is not a legal FAT%s option",
fat == 32 ? 'e' : opt_i ? 'i' : 'k',
fat == 32 ? "32" : "12/16");
if (opt_f && fat == 32)
bpb.rde = 0;
if (opt_b) {
if (!powerof2(opt_b))
errx(1, "block size (%u) is not a power of 2", opt_b);
if (opt_b < bpb.bps)
errx(1, "block size (%u) is too small; minimum is %u",
opt_b, bpb.bps);
if (opt_b > bpb.bps * MAXSPC)
errx(1, "block size (%u) is too large; maximum is %u",
opt_b, bpb.bps * MAXSPC);
bpb.spc = opt_b / bpb.bps;
}
if (opt_c) {
if (!powerof2(opt_c))
errx(1, "sectors/cluster (%u) is not a power of 2", opt_c);
bpb.spc = opt_c;
}
if (opt_r)
bpb.res = opt_r;
if (opt_n) {
if (opt_n > MAXNFT)
errx(1, "number of FATs (%u) is too large; maximum is %u",
opt_n, MAXNFT);
bpb.nft = opt_n;
}
if (opt_e)
bpb.rde = opt_e;
if (mflag) {
if (opt_m < 0xf0)
errx(1, "illegal media descriptor (%#x)", opt_m);
bpb.mid = opt_m;
}
if (opt_a)
bpb.bspf = opt_a;
if (opt_i)
bpb.infs = opt_i;
if (opt_k)
bpb.bkbs = opt_k;
bss = 1;
bname = NULL;
fd1 = -1;
if (opt_B) {
bname = opt_B;
if (!strchr(bname, '/')) {
snprintf(buf, sizeof(buf), "/boot/%s", bname);
if (!(bname = strdup(buf)))
err(1, NULL);
}
if ((fd1 = open(bname, O_RDONLY)) == -1 || fstat(fd1, &sb))
err(1, "%s", bname);
if (!S_ISREG(sb.st_mode) || sb.st_size % bpb.bps ||
sb.st_size < bpb.bps || sb.st_size > bpb.bps * MAXU16)
errx(1, "%s: inappropriate file type or format", bname);
bss = (u_int)(sb.st_size / bpb.bps);
}
if (!bpb.nft)
bpb.nft = 2;
sd_card_set_defaults(fname, &fat, &bpb);
/*
* [2873851] If the FAT type or sectors per cluster were not explicitly specified,
* set them to default values.
*/
if (!bpb.spc)
{
u_int64_t kilobytes = (u_int64_t) bpb.bps * (u_int64_t) bpb.bsec / 1024U;
u_int32_t bytes_per_cluster;
/*
* If the user didn't specify the FAT type, then pick a default based on
* the size of the volume.
*/
if (!fat)
{
if (bpb.bps == 512 && bpb.bsec <= MAX_SEC_FAT12_512)
fat = 12;
else if (bpb.bps != 512 && bpb.bsec <= MAX_SEC_FAT12)
fat = 12;
else if (kilobytes <= MAX_KB_FAT16)
fat = 16;
else
fat = 32;
}
switch (fat)
{
case 12:
/*
* There is no general table for FAT12, so try all possible
* bytes-per-cluster values until it all fits, or we try the
* maximum cluster size.
*/
for (bytes_per_cluster = bpb.bps; bytes_per_cluster <= 32768; bytes_per_cluster *= 2)
{
bpb.spc = bytes_per_cluster / bpb.bps;
/* Start with number of reserved sectors */
x = bpb.res ? bpb.res : bss;
/* Plus number of sectors used by FAT */
x += howmany((RESFTE+MAXCLS12+1)*(12/BPN), bpb.bps*NPB) * bpb.nft;
/* Plus root directory */
x += howmany(bpb.rde ? bpb.rde : DEFRDE, bpb.bps / sizeof(struct de));
/* Plus data clusters */
x += (MAXCLS12+1) * bpb.spc;
/*
* We now know how many sectors the volume would occupy with the given
* sectors per cluster, and the maximum number of FAT12 clusters. If
* this is as big as or bigger than the actual volume, we've found the
* minimum sectors per cluster.
*/
if (x >= bpb.bsec)
break;
}
break;
case 16:
for (x=0; kilobytes > fat16Sizes[x].kilobytes; ++x)
;
bytes_per_cluster = fat16Sizes[x].bytes_per_cluster;
if (bytes_per_cluster < bpb.bps)
bytes_per_cluster = bpb.bps;
bpb.spc = bytes_per_cluster / bpb.bps;
break;
case 32:
for (x=0; kilobytes > fat32Sizes[x].kilobytes; ++x)
;
bytes_per_cluster = fat32Sizes[x].bytes_per_cluster;
if (bytes_per_cluster < bpb.bps)
bytes_per_cluster = bpb.bps;
bpb.spc = bytes_per_cluster / bpb.bps;
break;
default:
errx(1, "Invalid FAT type: %d", fat);
break;
}
if (bpb.spc == 0)
errx(1, "FAT%d is impossible with %u sectors", fat, bpb.bsec);
}
else
{
/*
* User explicitly specified sectors per cluster. If they didn't
* specify the FAT type, pick one that uses up the available sectors.
*/
if (!fat)
{
/* See if a maximum number of FAT clusters would fill it up. */
if (bpb.bsec < (bpb.res ? bpb.res : bss) +
howmany((RESFTE+MAXCLS12+1) * (12/BPN), bpb.bps * BPN) * bpb.nft +
howmany(bpb.rde ? bpb.rde : DEFRDE, bpb.bps / sizeof(struct de)) +
(MAXCLS12+1) * bpb.spc)
{
fat = 12;
}
else if (bpb.bsec < (bpb.res ? bpb.res : bss) +
howmany((RESFTE+MAXCLS16) * 2, bpb.bps) * bpb.nft +
howmany(bpb.rde ? bpb.rde : DEFRDE, bpb.bps / sizeof(struct de)) +
(MAXCLS16+1) * bpb.spc)
{
fat = 16;
}
else
{
fat = 32;
}
}
}
x = bss;
if (fat == 32) {
if (!bpb.infs) {
if (x == MAXU16 || x == bpb.bkbs)
errx(1, "no room for info sector");
bpb.infs = x;
}
if (bpb.infs != MAXU16 && x <= bpb.infs)
x = bpb.infs + 1;
if (!bpb.bkbs) {
if (x == MAXU16)
errx(1, "no room for backup sector");
if (x <= BACKUP_BOOT_SECTOR)
bpb.bkbs = BACKUP_BOOT_SECTOR;
else
bpb.bkbs = x;
} else if (bpb.bkbs != MAXU16 && bpb.bkbs == bpb.infs)
errx(1, "backup sector would overwrite info sector");
if (bpb.bkbs != MAXU16 && x <= bpb.bkbs)
x = bpb.bkbs + 1;
}
if (!bpb.res)
bpb.res = fat == 32 ? MAX(x, FAT32_RESERVED_SECTORS) : x;
else if (bpb.res < x)
errx(1, "too few reserved sectors");
if (fat != 32 && !bpb.rde)
bpb.rde = DEFRDE;
rds = howmany(bpb.rde, bpb.bps / sizeof(struct de));
if (fat != 32 && bpb.bspf > MAXU16)
errx(1, "too many sectors/FAT for FAT12/16");
x1 = bpb.res + rds;
x = bpb.bspf ? bpb.bspf : 1;
if (x1 + (u_int64_t)x * bpb.nft > bpb.bsec)
errx(1, "meta data exceeds file system size");
x1 += x * bpb.nft;
x = (u_int)((u_int64_t)(bpb.bsec - x1) * bpb.bps * NPB /
(bpb.spc * bpb.bps * NPB + fat / BPN * bpb.nft));
x2 = howmany((RESFTE + MIN(x, maxcls(fat))) * (fat / BPN),
bpb.bps * NPB);
if (!bpb.bspf) {
bpb.bspf = x2;
/* Round up bspf to a multiple of physical sector size */
if (opt_P > bpb.bps) {
u_int phys_per_log = opt_P / bpb.bps;
u_int remainder = bpb.bspf % phys_per_log;
if (remainder) {
bpb.bspf += phys_per_log - remainder;
}
}
x1 += (bpb.bspf - 1) * bpb.nft;
}
cls = (bpb.bsec - x1) / bpb.spc;
x = (u_int)((u_int64_t)bpb.bspf * bpb.bps * NPB / (fat / BPN) - RESFTE);
if (cls > x)
{
/*
* This indicates that there are more sectors available
* for data clusters than there are usable entries in the
* FAT. In this case, we need to limit the number of
* clusters, and also reduce the number of sectors.
*/
bpb.bsec = bpb.res + bpb.bspf*bpb.nft + rds + x*bpb.spc;
warnx("warning: sectors/FAT limits sectors to %u, clusters to %u", bpb.bsec, x);
cls = x;
}
if (bpb.bspf < x2)
warnx("warning: sectors/FAT limits file system to %u clusters",
cls);
if (cls < mincls(fat))
errx(1, "%u clusters too few clusters for FAT%u, need %u", cls, fat,
mincls(fat));
if (cls > maxcls(fat)) {
cls = maxcls(fat);
bpb.bsec = x1 + (cls + 1) * bpb.spc - 1;
warnx("warning: FAT type limits file system to %u sectors",
bpb.bsec);
}
printf("%s: %u sector%s in %u FAT%u cluster%s "
"(%u bytes/cluster)\n", fname, cls * bpb.spc,
cls * bpb.spc == 1 ? "" : "s", cls, fat,
cls == 1 ? "" : "s", bpb.bps * bpb.spc);
if (!bpb.mid)
bpb.mid = !bpb.hid ? 0xf0 : 0xf8;
if (fat == 32)
bpb.rdcl = RESFTE;
if (bpb.bsec <= MAXU16) {
bpb.sec = bpb.bsec;
bpb.bsec = 0;
}
if (fat != 32) {
bpb.spf = bpb.bspf;
bpb.bspf = 0;
} else {
if (bpb.bsec == 0)
bpb.bsec = bpb.sec;
bpb.spf = 0;
bpb.sec = 0;
}
print_bpb(&bpb);
if (!opt_N) {
u_int sectors_to_write;
/*
* Get the current date and time in case we need it for the volume ID.
*/
gettimeofday(&tv, NULL);
now = tv.tv_sec;
tm = localtime(&now);
/*
* Allocate a buffer for assembling the to-be-written sectors, and
* a separate buffer for the boot sector (which will be written last).
*/
if (!(io_buffer = malloc(IO_BUFFER_SIZE)))
err(1, NULL);
if (!(bpb_buffer = malloc(bpb.bps)))
err(1, NULL);
img = io_buffer;
dir = bpb.res + (bpb.spf ? bpb.spf : bpb.bspf) * bpb.nft;
sectors_to_write = dir + (fat == 32 ? bpb.spc : rds);
/*
* Invalidate any prior file system by overwriting their identifying
* information. NOTE: wipefs will also send a DKIOCDISCARD.
*/
wipefs_ctx wiper;
int error;
error = wipefs_alloc(fd, bpb.bps, &wiper);
if (error)
errc(1, error, "%s: wipefs_alloc()", fname);
error = wipefs_except_blocks(wiper, 0, sectors_to_write);
if (error)
errc(1, error, "%s: wipefs_except_blocks()", fname);
error = wipefs_wipe(wiper);
if (error)
errc(1, error, "%s: wipefs_wipe()", fname);
wipefs_free(&wiper);
/*
* Now start writing the new file system to disk.
*/
for (lsn = 0; lsn < sectors_to_write; lsn++) {
x = lsn;
if (opt_B &&
fat == 32 && bpb.bkbs != MAXU16 &&
bss <= bpb.bkbs && x >= bpb.bkbs) {
x -= bpb.bkbs;
if (!x && lseek(fd1, 0, SEEK_SET))
err(1, "%s", bname);
}
if (opt_B && x < bss) {
if ((n = read(fd1, img, bpb.bps)) == -1)
err(1, "%s", bname);
if (n != bpb.bps)
errx(1, "%s: can't read sector %u", bname, x);
} else
memset(img, 0, bpb.bps);
if (!lsn ||
(fat == 32 && bpb.bkbs != MAXU16 && lsn == bpb.bkbs)) {
x1 = sizeof(struct bs);
bsbpb = (struct bsbpb *)(img + x1);
mk2(bsbpb->bps, bpb.bps);
mk1(bsbpb->spc, bpb.spc);
mk2(bsbpb->res, bpb.res);
mk1(bsbpb->nft, bpb.nft);
mk2(bsbpb->rde, bpb.rde);
mk2(bsbpb->sec, bpb.sec);
mk1(bsbpb->mid, bpb.mid);
mk2(bsbpb->spf, bpb.spf);
mk2(bsbpb->spt, bpb.spt);
mk2(bsbpb->hds, bpb.hds);
mk4(bsbpb->hid, bpb.hid);
mk4(bsbpb->bsec, bpb.bsec);
x1 += sizeof(struct bsbpb);
if (fat == 32) {
bsxbpb = (struct bsxbpb *)(img + x1);
mk4(bsxbpb->bspf, bpb.bspf);
mk2(bsxbpb->xflg, 0);
mk2(bsxbpb->vers, 0);
mk4(bsxbpb->rdcl, bpb.rdcl);
mk2(bsxbpb->infs, bpb.infs);
mk2(bsxbpb->bkbs, bpb.bkbs);
x1 += sizeof(struct bsxbpb);
}
bsx = (struct bsx *)(img + x1);
mk1(bsx->drv, bpb.driveNum);
mk1(bsx->sig, 0x29);
if (Iflag)
x = opt_I;
else
x = (((u_int)(1 + tm->tm_mon) << 8 |
(u_int)tm->tm_mday) +
((u_int)tm->tm_sec << 8 |
(u_int)(tv.tv_usec / 10))) << 16 |
((u_int)(1900 + tm->tm_year) +
((u_int)tm->tm_hour << 8 |
(u_int)tm->tm_min));
mk4(bsx->volid, x);
mklabel(bsx->label, opt_v ? opt_v : "NO NAME");
snprintf(buf, sizeof(buf), "FAT%u", fat);
setstr(bsx->type, buf, sizeof(bsx->type));
if (!opt_B) {
x1 += sizeof(struct bsx);
bs = (struct bs *)img;
mk1(bs->jmp[0], 0xeb);
mk1(bs->jmp[1], x1 - 2);
mk1(bs->jmp[2], 0x90);
setstr(bs->oem, opt_O ? opt_O : "BSD 4.4",
sizeof(bs->oem));
memcpy(img + x1, bootcode, sizeof(bootcode));
mk2(img + 510, DOSMAGIC);
}
} else if (fat == 32 && bpb.infs != MAXU16 &&
(lsn == bpb.infs ||
(bpb.bkbs != MAXU16 &&
lsn == bpb.bkbs + bpb.infs))) {
mk4(img, 0x41615252);
mk4(img + 484, 0x61417272);
mk4(img + 488, cls-1);
mk4(img + 492, bpb.rdcl+1);
/* Offsets 508-509 remain zero */
mk2(img + 510, DOSMAGIC);
} else if (lsn >= bpb.res && lsn < dir &&
!((lsn - bpb.res) %
(bpb.spf ? bpb.spf : bpb.bspf))) {
mk1(img[0], bpb.mid);
for (x = 1; x < fat * (fat == 32 ? 3 : 2) / 8; x++)
mk1(img[x], fat == 32 && x % 4 == 3 ? 0x0f : 0xff);
} else if (lsn == dir && opt_v && *opt_v) {
de = (struct de *)img;
mklabel(de->namext, opt_v);
mk1(de->attr, 050);
x = (u_int)tm->tm_hour << 11 |
(u_int)tm->tm_min << 5 |
(u_int)tm->tm_sec >> 1;
mk2(de->time, x);
x = (u_int)(tm->tm_year - 80) << 9 |
(u_int)(tm->tm_mon + 1) << 5 |
(u_int)tm->tm_mday;
mk2(de->date, x);
}
img += bpb.bps;
if (lsn == 0) {
/* Zero out boot sector for now and save it to be written at the end */
memcpy(bpb_buffer, io_buffer, bpb.bps);
bzero(io_buffer, bpb.bps);
}
if (img >= (io_buffer + IO_BUFFER_SIZE)) {
/* We filled the I/O buffer, so write it out now */
if ((n = write(fd, io_buffer, IO_BUFFER_SIZE)) == -1)
err(1, "%s", fname);
if (n != IO_BUFFER_SIZE)
errx(1, "%s: can't write sector %u", fname, lsn);
img = io_buffer;
}
}
if (img != io_buffer) {
/* The I/O buffer was partially full; write it out before exit */
if ((n = write(fd, io_buffer, img-io_buffer)) == -1)
err(1, "%s", fname);
if (n != (img-io_buffer))
errx(1, "%s: can't write sector %u", fname, lsn);
}
/* Write out boot sector at the end now */
if (lseek(fd, 0, SEEK_SET) == -1)
err(1, "lseek: %s", fname);
if ((n = write(fd, bpb_buffer, bpb.bps)) == -1)
err(1, "write: %s", fname);
if (n != bpb.bps)
errx(1, "%s: can't write boot sector", fname);
}
return 0;
}
/*
* Exit with error if file system is mounted.
*/
static void
check_mounted(const char *fname, mode_t mode)
{
struct statfs *mp;
const char *s1, *s2;
size_t len;
int n, r;
if (!(n = getmntinfo(&mp, MNT_NOWAIT)))
err(1, "getmntinfo");
len = strlen(_PATH_DEV);
s1 = fname;
if (!strncmp(s1, _PATH_DEV, len))
s1 += len;
r = S_ISCHR(mode) && s1 != fname && *s1 == 'r';
for (; n--; mp++) {
s2 = mp->f_mntfromname;
if (!strncmp(s2, _PATH_DEV, len))
s2 += len;
if ((r && s2 != mp->f_mntfromname && !strcmp(s1 + 1, s2)) ||
!strcmp(s1, s2))
errx(1, "%s is mounted on %s", fname, mp->f_mntonname);
}
}
/*
* Get a standard format.
*/
static void
getstdfmt(const char *fmt, struct bpb *bpb)
{
u_int x, i;
x = sizeof(stdfmt) / sizeof(stdfmt[0]);
for (i = 0; i < x && strcmp(fmt, stdfmt[i].name); i++);
if (i == x)
errx(1, "%s: unknown standard format", fmt);
*bpb = stdfmt[i].bpb;
}
/*
* Get disk partition, and geometry information.
*/
static void
getdiskinfo(int fd, const char *fname, const char *dtype, int oflag,
struct bpb *bpb)
{
uint64_t partition_offset = 0; /* in bytes from start of device */
uint64_t block_count;
uint32_t block_size;
if (ioctl(fd, DKIOCGETBASE, &partition_offset) == -1)
err(1, "%s: Cannot get partition offset", fname);
/*
* If we'll need the block count or block size, get them now.
*/
if (!bpb->bsec || !bpb->hds)
{
if (ioctl(fd, DKIOCGETBLOCKCOUNT, &block_count) == -1)
err(1, "%s: Cannot get number of sectors", fname);
}
if (!bpb->bps || !bpb->bsec)
{
/*
* Note: if user specified bytes per sector, but not number of sectors,
* then we'll need the sector size in order to calculate the total
* bytes in this partition.
*/
if (ioctl(fd, DKIOCGETBLOCKSIZE, &block_size) == -1)
err(1, "%s: Cannot get number of sectors", fname);
}
/*
* If bytes-per-sector was explicitly specified, but total number of
* sectors was not explicitly specified, then find out how many sectors
* of the given size would fit into the given partition (calculate the
* size of the partition in bytes, and divide by the desired bytes per
* sector).
*
* This makes it possible to create a disk image, and format it in
* preparation for copying to a device with a different sector size.
*/
if (bpb->bps && !bpb->bsec)
bpb->bsec = (u_int)((block_count * block_size) / bpb->bps);
if (!bpb->bsec)
bpb->bsec = (u_int)block_count;
if (!bpb->bps)
bpb->bps = block_size;
if (!oflag)
bpb->hid = (u_int)(partition_offset / bpb->bps);
/*
* Set up the INT 0x13 style drive number for BIOS. The FAT specification
* says "0x00 for floppies, 0x80 for hard disks". I assume that means
* 0x80 if partitioned, and 0x000 otherwise.
*/
bpb->driveNum = partition_offset != 0 ? 0x80 : 0x00;
/*
* Compute default values for sectors per track and number of heads
* (number of tracks per cylinder) if the user didn't explicitly provide
* them. This calculation mimics the dkdisklabel() routine from
* disklib.
*/
if (!bpb->spt)
bpb->spt = 32; /* The same constant that dkdisklabel() used. */
if (!bpb->hds)
{
/*
* These are the same values used by dkdisklabel().
*
* Note the use of block_count instead of bpb->bsec here.
* dkdisklabel() computed its fake geometry based on the block
* count returned by DKIOCGETBLOCKCOUNT, without adjusting for
* a new block size.
*/
if (block_count < 8*32*1024)
bpb->hds = 16;
else if (block_count < 16*32*1024)
bpb->hds = 32;
else if (block_count < 32*32*1024)
bpb->hds = 54; /* Should be 64? Bug in dkdisklabel()? */
else if (block_count < 64*32*1024)
bpb->hds = 128;
else
bpb->hds = 255;
}
}
/*
* Given the path we're formatting, see if it looks like an SD card.
*/
static enum SDCardType sd_card_type_for_path(const char *path)
{
enum SDCardType result = kCardTypeNone;
const char *disk = NULL;
io_service_t obj = 0;
CFDictionaryRef cardCharacteristics = NULL;
CFStringRef cardType = NULL;
/*
* We're looking for the "disk1s1" part of the path, so see if the
* path starts with "/dev/" or "/dev/r" and point past that.
*/
if (!strncmp(path, "/dev/", 5))
{
disk = path + 5; /* Skip over "/dev/". */
if (*disk == 'r')
++disk; /* Skip over the "r" in "/dev/r". */
}
/*
* Look for an IOService with the given BSD disk name.
*/
if (disk)
{
obj = IOServiceGetMatchingService(kIOMasterPortDefault,
IOBSDNameMatching(kIOMasterPortDefault, 0, disk));
}
/* See if the object has a card characteristics dictionary. */
if (obj)
{
cardCharacteristics = IORegistryEntrySearchCFProperty(
obj, kIOServicePlane,
CFSTR(kIOPropertyCardCharacteristicsKey),
kCFAllocatorDefault,
kIORegistryIterateRecursively|kIORegistryIterateParents);
}
/* See if the dictionary contains a card type string. */
if (cardCharacteristics && CFGetTypeID(cardCharacteristics) == CFDictionaryGetTypeID())
{
cardType = CFDictionaryGetValue(cardCharacteristics, CFSTR(kIOPropertyCardTypeKey));
}
/* Turn the card type string into one of our constants. */
if (cardType && CFGetTypeID(cardType) == CFStringGetTypeID())
{
if (CFEqual(cardType, CFSTR(kIOPropertyCardTypeSDSCKey)))
result = kCardTypeSDSC;
else if (CFEqual(cardType, CFSTR(kIOPropertyCardTypeSDHCKey)))
result = kCardTypeSDHC;
else if (CFEqual(cardType, CFSTR(kIOPropertyCardTypeSDXCKey)))
result = kCardTypeSDXC;
}
if (cardCharacteristics)
CFRelease(cardCharacteristics);
if (obj)
IOObjectRelease(obj);
return result;
}
/*
* If the given path is to some kind of SD card, then use the default FAT type
* and cluster size specified by the SD Card Association.
*
* Note that their specification refers to card capacity, which means the size
* of the entire media (not just the partition containing the file system).
* Below, the size of the partition is being compared since that is what we
* have most convenient access to, and its size is only slightly smaller than
* the size of the entire media. This program does not write the partition
* map, so we can't enforce the recommended partition offset.
*/
static void sd_card_set_defaults(const char *path, u_int *fat, struct bpb *bpb)
{
/*
* Only use SD card defaults if the sector size is 512 bytes, and the
* user did not explicitly specify the FAT type or cluster size.
*/
if (*fat != 0 || bpb->spc != 0 || bpb->bps != 512)
return;
enum SDCardType cardType = sd_card_type_for_path(path);
switch (cardType)
{
case kCardTypeNone:
break;
case kCardTypeSDSC:
if (bpb->bsec < 16384)
{
/* Up to 8MiB, use FAT12 and 16 sectors per cluster */
*fat = 12;
bpb->spc = 16;
}
else if (bpb->bsec < 128 * 1024)
{
/* Up to 64MiB, use FAT12 and 32 sectors per cluster */
*fat = 12;
bpb->spc = 32;
}
else if (bpb->bsec < 2 * 1024 * 1024)
{
/* Up to 1GiB, use FAT16 and 32 sectors per cluster */
*fat = 16;
bpb->spc = 32;
}
else
{
/* 1GiB or larger, use FAT16 and 64 sectors per cluster */
*fat = 16;
bpb->spc = 64;
}
break;
case kCardTypeSDHC:
*fat = 32;
bpb->spc = 64;
break;
case kCardTypeSDXC:
warnx("%s: newfs_exfat should be used for SDXC media", path);
break;
}
}
/*
* Print out BPB values.
*/
static void
print_bpb(struct bpb *bpb)
{
printf("bps=%u spc=%u res=%u nft=%u", bpb->bps, bpb->spc, bpb->res,
bpb->nft);
if (bpb->rde)
printf(" rde=%u", bpb->rde);
if (bpb->sec)
printf(" sec=%u", bpb->sec);
printf(" mid=%#x", bpb->mid);
if (bpb->spf)
printf(" spf=%u", bpb->spf);
printf(" spt=%u hds=%u hid=%u drv=0x%02X", bpb->spt, bpb->hds, bpb->hid, bpb->driveNum);
if (bpb->bsec)
printf(" bsec=%u", bpb->bsec);
if (!bpb->spf) {
printf(" bspf=%u rdcl=%u", bpb->bspf, bpb->rdcl);
printf(" infs=");
printf(bpb->infs == MAXU16 ? "%#x" : "%u", bpb->infs);
printf(" bkbs=");
printf(bpb->bkbs == MAXU16 ? "%#x" : "%u", bpb->bkbs);
}
printf("\n");
}
/*
* Convert and check a numeric option argument.
*/
static u_int
argtou(const char *arg, u_int lo, u_int hi, const char *msg)
{
char *s;
u_long x;
errno = 0;
x = strtoul(arg, &s, 0);
if (errno || !*arg || *s || x < lo || x > hi)
errx(1, "%s: bad %s", arg, msg);
return (u_int)x;
}
/*
* Check a volume label.
*/
static int
oklabel(const char *src)
{
int c, i;
for (i = 0; i <= 11; i++) {
c = (u_char)*src++;
if (c < ' ' + !i || strchr("\"*+,./:;<=>?[\\]|", c))
break;
}
return !c;
}
/*
* Make a volume label.
*/
static void
mklabel(u_int8_t *dest, const char *src)
{
int c, i;
for (i = 0; i < 11; i++) {
c = *src ? toupper(*src++) : ' ';
*dest++ = !i && c == '\xe5' ? 5 : c;
}
}
/*
* Copy string, padding with spaces.
*/
static void
setstr(u_int8_t *dest, const char *src, size_t len)
{
while (len--)
*dest++ = *src ? *src++ : ' ';
}
/*
* Print usage message.
*/
static void
usage(void)
{
fprintf(stderr,
"usage: newfs_msdos [ -options ] special [disktype]\n");
fprintf(stderr, "where the options are:\n");
fprintf(stderr, "\t-N don't create file system: "
"just print out parameters\n");
fprintf(stderr, "\t-B get bootstrap from file\n");
fprintf(stderr, "\t-F FAT type (12, 16, or 32)\n");
fprintf(stderr, "\t-I volume ID\n");
fprintf(stderr, "\t-O OEM string\n");
fprintf(stderr, "\t-S bytes/sector\n");
fprintf(stderr, "\t-P physical bytes/sector\n");
fprintf(stderr, "\t-a sectors/FAT\n");
fprintf(stderr, "\t-b block size\n");
fprintf(stderr, "\t-c sectors/cluster\n");
fprintf(stderr, "\t-e root directory entries\n");
fprintf(stderr, "\t-f standard format\n");
fprintf(stderr, "\t-h drive heads\n");
fprintf(stderr, "\t-i file system info sector\n");
fprintf(stderr, "\t-k backup boot sector\n");
fprintf(stderr, "\t-m media descriptor\n");
fprintf(stderr, "\t-n number of FATs\n");
fprintf(stderr, "\t-o hidden sectors\n");
fprintf(stderr, "\t-r reserved sectors\n");
fprintf(stderr, "\t-s file system size (in sectors)\n");
fprintf(stderr, "\t-u sectors/track\n");
fprintf(stderr, "\t-v filesystem/volume name\n");
exit(1);
}