

1 Product Description

1.1 Overview

A523 series features high-performance platform processors for medium- and high-end tablets and interactive display applications. It integrates octa-core Cortex[™]-A55 CPU and G57 MC01 GPU to ensure rapid response and smooth running for daily applications, such as on-line video, web series browsing, 3D game, on. A523 SO DDR3/DDR3L/DDR4/LPDDR3/LPDDR4/LPDDR4X, eMMC, NAND, SPI NAND, high-speed interfaces (PCIe2.1 and USB3.1 GEN1), multi video output interfaces (RGB/Dual-LVDS/2xMIPI-DSI/eDP), and video input interfaces (MIPI CSI). In addition, this chip family supports 4K@60fps H.265 decoder, 4K@25fps H.264 encoder, DI, and SmartColor system to provide users with outstanding experience. A523 series can be applied in the tablet PC market and the interactive terminal market.

1.2 Device Differences

The A523 series is configured with different sets of features in different devices. The feature differences across different devices are shown in the following table.

Table 1-1 Device Feature Differences

Device	Cortex [™] -A55	5 Maximum Video Decoding Rate	
	Speed Grade	H.265	VP9
A523H00X0000	2.0 GHz	4K@60fps, 10 bits	4K@60fps, 10 bits
A523M00X0000	1.8 GHz	4K@30fps, 8bits	4K@30fps, 8bits

The terms "A523" and "A523 Series" are used in the following document to refer to the all devices listed in Table 1-1.

1.3 Features

1.3.1 CPU Architecture

- Octa-core ARM Cortex[™]-A55 in a DynamIQ big.LITTLE configuration, up to 2.0 GHz
 - 32 KB L1 I-cache and 32 KB L1 D-cache per A55 core
 - Optional 64KB L2 cache per "LITTLE" core
 - Optional 128KB L2 cache per "big" core
- Single-core RISC-V, up to 200 MHz
 - 16 KB I-cache and 16 KB D-cache
 - RV32IMAFC instructions

1.3.2 GPU Architecture

- ARM G57 MC01 GPU
- Supports OpenGL ES 3.2/2.0/1.1, Vulkan1.1/1.2/1.3, and OpenCL2.2
- Output and input format: 8-bit, 10-bit, and 16-bit YUV
- Anti-aliasing algorithm
- High memory bandwidth and low power consumption in 3D graphics processing
- AMBA4 AXI slave interface
- Latency tolerance
- Texture compression
- Configurable power management
- AFBC1.3
- Supports Digital Rights Management (DRM)

1.3.3 Memory Subsystem

1.3.3.1 Boot ROM (BROM)

- On-chip memory
- Supports system boot from the following devices:
 - SD Card
 - eMMC
 - RAW NAND Flash
 - SPI NOR Flash (Single Mode and Quad Mode)

- SPI NAND Flash
- Supports mandatory upgrade process through USB or SD card
- Supports GPADC0 pin and eFuse module to select the boot media type
- Supports normal booting and secure booting
- Secure BROM loads only certified firmware
- Secure BROM ensures that the secure boot is a trusted environment

1.3.3.2 RAW NAND Flash

- Up to 80-bit ECC per 1024 bytes
- Supports 1K/2K/4K/8K/16K/32K bytes page size
- Up to 8-bit data bus width
- Supports SLC/MLC/TLC flash and EF-NAND
- Supports SDR, ONFI DDR1.0, Toggle DDR1.0, ONFI DDR2.0, and Toggle DDR2.0 RAW NAND FLASH

1.3.3.3 SDRAM

- 32-bit DDR3/DDR3L/DDR4/LPDDR3/LPDDR4/LPDDR4X interface
- Memory capacity up to 4GB
- 4 chip select lines for for LPDDR3, LPDDR4, and LPDDR4X (especially the 64-bit LPDDR3, LPDDR4, and LPDDR4X)
- Clock frequency up to 1066 MHz for DDR3, DDR3L, and LPDDR3
- Clock frequency up to 1200 MHz for DDR4, LPDDR4, and LPDDR4x

1.3.3.4 SMHC

- Three SD/MMC host controller (SMHC) interfaces
 - SMHC0, compliant with the protocol Secure Digital Memory (SD3.0)
 - SMHC1, compliant with the protocol Secure Digital I/O (SDIO3.0)
 - SMHC2, compliant with the protocol Multimedia Card (eMMC5.1)
- The SMHC0 and the SMHC1 support the following:
 - 1-bit or 4-bit data width
 - Maximum performance:
 - ➤ SDR mode 200 MHz@1.8 V IO pad
 - > DDR mode 50 MHz@1.8 V IO pad

- SDR mode 50 MHz@3.3 V IO pad
- The SMHC2 supports the following:
 - 1-bit, 4-bit, or 8-bit data width
 - Supports HS400 mode and HS200 mode
 - Maximum performance
 - > SDR mode 200MHz@1.8V IO pad
 - DDR mode 200MHz@1.8V IO pad
 - > SDR mode 50MHz@3.3V IO pad
 - ➤ DDR mode 50MHz@3.3V IO pad
- Support block size of 1 to 65535 bytes
- Support hardware CRC generation and error detection

1.3.4 Video and Graphics

1.3.4.1 Display Engine (DE)

- Output size up to 4096 x 2048
- Supports seven alpha blending channels for main display and two display outputs
- Supports four overlay layers in each channel, and has an independent scaler
- Supports potter-duff compatible blending operation
- Supports AFBC buffer decoder
- Supports vertical keystone correction
- Input format
 - Semi-planar of YUV422/YUV420/YUV411/P010/P210
 - Planar of YUV422/YUV420/ YUV411
 - ARGB8888/XRGB8888/RGB888/ARGB4444/ ARGB1555/RGB565
- Output format: 8-bit or 10-bit YUV444/YUV422/YUV420/RGB444
- Frame Packing/Top-and-Bottom/Side-by-Side Full/Side-by-Side Half 3D format data
- 10-bit processing path for HDR video
- SmartColor5.0 for excellent display experience
 - Adaptive de-noising for compression noise or mosquito noise with yuv420/422 input
 - Adaptive super resolution scaler
 - Adaptive local dynamic contrast enhancement
 - Adaptive detail/edge enhancement

- Adaptive color enhancement (blue-stretch, green-stretch, and fresh tone correction) and skin tone protection
- Hue gain, saturation gain, and value gain controller
- Fully programmable color matrix
- Dynamic gamma
- Supports write back for high efficient dual display and miracast
- Supports register configuration queue for register update function

1.3.4.2 De-interlacer (DI)

- Only off-line processing mode
- Video resolution from 32x32 to 2048x1280 pixel
- Input data format: 8-bit NV12/NV21/YV12 and planar YUV422/planar YUV422 UV-combined
- Output data format
 - 8-bit NV12/NV21/YV12 and planar YUV422/planar YUV422 UV-combined for DIT
 - YV12/planar YUV422 for TNR
- Weave/pixel-motion-adaptive de-interlace method
- Temporal noise reduction
- Film mode detection with video-on-film detection
- Performance
 - Module clock 120MHz for 1080P@60Hz YUV420 with all functions enable
 - Module clock 150MHz for 1080P@60Hz YUV422 with all functions enable

1.3.4.3 Graphic 2D (G2D)

- Layer size up to 2048x2048 pixels
- Input format and output format contain the following:
 - YUV422 (semi-planar and planar format)
 - YUV420 (semi-planar and planar format)
 - P010, P210, P410, and Y8
 - ARGB8888, XRGB8888, RGB888, ARGB4444, ARGB1555, ARGB2101010, and RGB565
- Multiple rotation types
 - Horizontal flip and vertical flip
 - 0, 90, 180, or 270 degrees' rotation in clockwise direction

1.3.4.4 Video Engine

Video Decoding

- Supports ITU-T H.265 Main/Main10, level 6.1
 - Maximum video resolution:8192x4320
 - Maximum decoding rate: 3840x2160@60fps, 10 bits
- Supports VP9 Profile0/ Profile2, level 6.1
 - Maximum video resolution: 8192 x 4320
 - Maximum decoding rate: 3840x2160@60fps, 10 bits
- Supports ITU-T H.264 Base/Main/High Profile@Level 4.2
 - Maximum video resolution: 3840 x 2160
 - Maximum decoding rate: 3840x2160@30fps, 8 bits

Video Encoding

- H.264 BP/MP/HP encoding
 - Supports 4K@25fps@8bits
 - Maximum resolution: 4096 x 4096 (16 megapixels)
 - Supports I/P frame type
 - Supports CBR, VBR and FIXEDQP modes
 - Supports region of interest(ROI) encoding, a maximum of eight ROIs
- JPEG baseline encoding
 - JPEG encoder supports 4K@15fps
 - JPEG encoder supports YUV420, YUV422 and YUV444 format
- MJPEG baseline encoding up to 4K@15fps

1.3.5 Video Output

1.3.5.1 eDP1.3

- Up to 2.5K@60fps
- 1-lane, 2-lane, or 4-lane transmission, up to 2.7 Gbit/s per lane
- Video formats: RGB, YCbCr4:4:4, and YCbCr4:2:2
- Color depth: 8-bit and 10-bit per channel
- Supports I2S interface
 - Supports mono sound, stereo sound, and 7.1 surround sound

- Maximum sampling rate: 192 KHz
- Full link training
- Hot plug detection
- AUX channel
 - Maximum working frequency: 1MHz
 - Adopts Manchester-II encoding
- Clock spread spectrum
- Programmable voltage swing and pre-emphasis
- Embedded ESD

1.3.5.2 MIPI DSI

- Compliance with MIPI DSI V1.02
- Up to 1.5 Gbit/s for each lane
- Supports 4-lane MIPI DSI, up to 1280 x 720@60fps and 1920 x 1200@60fps
- Supports 4+4-lane MIPI DSI, up to 2560 x 1600@60fps
- Supports non-burst mode with sync pulse/sync event and burst mode
- Pixel format: RGB888, RGB666, RGB666 loosely packed and RGB565
- Supports continuous and non-continuous lane clock modes
- Generic commands support bidirectional communication in LP through data lane 0
- Supports low power data transmission
- Supports ULPS and escape modes
- Supports hardware checksum

1.3.5.3 TCON LCD

- Two TCON LCD controllers: TONC_LCD0 and TCON_LCD1
- TCON_LCD0 supports the following
 - Supports RGB interface with DE/SYNC mode, up to 1920 x 1080@60fps
 - Supports serial RGB/dummy RGB interface, up to 800 x 480@60fps
 - Supports LVDS interface with dual link, up to 1920 x 1080@60fps
 - Supports LVDS interface with single link, up to 1366 x 768@60fps
 - Dither function for RGB888, RGB666, and RGB565
 - Supports i8080 interface, up to 800 x 480@60fps

- Supports BT656 interface for NTSC and PAL
- Supports MIPI DSI interface with dual link, up to 2560x1600@60fps
- Supports MIPI DSI interface with single link, up to 1920x1200@60fps
- TCON_LCD1 supports MIPI DSI interface with single link, up to 1920x1200@60fps

1.3.5.4 TCON TV

- One TCON TV controller (TCON_TV1) for eDP1.3
- Up to 2.5K@60Hz
- Output format:
 - 8-bit or 10-bit pixel depth
 - HV

1.3.6 Video Input

1.3.6.1 ISP

- Supports one individual image signal processor(ISP), with maximum resolution of 3264x4224 in online mode
- Maximum frame rate of 8M@30fps 2F-WDR
- Supports off-line mode
- Supports WDR spilt, 2F-WDR line-based stitch, dynamic range compression (DRC), tone mapping, digital gain, gamma correction, defect pixel correction (DPC), cross talk correction (CTC), and chromatic aberration correction (CAC)
- Supports 2D/3D noise reduction, bayer interpolation, sharpen, white balance, and color enhancement
- Adjustable 3A functions: automatic white balance (AWB), automatic exposure (AE), and automatic focus (AF)
- Supports anti-flick detection statistics, and histogram statistics

1.3.6.2 VIPP

- Four VIPP YUV422 or YUV420 outputs
- Maximum resolution of 3264x4224
- Each VIPP has one sub-VIPP in online mode
- Each VIPP has maximum four sub-VIPPs for time division multiplexing in offline mode
- Each Sub-VIPP supports the following:

- Crop
- 1 to 1/16 scaling for height and width
- 16 ORLs
- Supports graphics mirror and flip

1.3.6.3 MIPLCSI

- 8M@30fps RAW12 2F-WDR, size up to 3264(H) x 2448(V)
- 4+4-lane, 4+2+2-lane, or 2+2+2+2-lane MIPI Interface
 - MIPI CSI2 V1.1
 - MIPI DPHY V1.1
 - 2.0 Gbit/s per lane
- Crop function
- Frame-rate decreasing via software
- 4 DMA controllers for 4 video stream storage
 - Conversion of interlaced input to progressive output (anti-aliasing and noise reduction are not supported)
 - Data conversion supports: YUV422 to YUV420, YUV422 to YUV400, YUV420 to YUV400
 - Horizontal and vertical flip

1.3.6.4 Parallel CSI

- 16-bit digital camera interface
- Supports 8/10/12/16-bit width
- Supports BT.656, BT.601, BT.1120 interface
- Dual Data Rate (DDR) sample mode with pixel clock up to 148.5MHz
- Supports ITU-R BT.656 up to 4*720P@30fps
- Supports ITU-R BT.1120 up to 4*1080P@30fps

1.3.7 System Peripherals

1.3.7.1 Clock Controller Unit (CCU)

- 10 PLLs
- One on-chip RC oscillator
- Supports one external 24 MHz DCXO and one external 32.768 kHz oscillator

- Supports clock configuration and clock generation for corresponding modules
- Supports software-controlled clock gating and software-controlled reset for corresponding modules

1.3.7.2 DMAC

- Up to 16-ch DMA in CPUX domain and 16-ch DMA in CPUS domain
- Provides 53 peripheral DMA requests for data reading and 53 peripheral DMA requests for data writing
- Transferring data with linked list
- Flexible data width: 8 bits, 16 bits, or 32 bits
- Programmable DMA burst length
- DRQ response includes waiting mode and handshake mode
- Supports non-aligned transform for memory devices
- DMA channels that support the following:
 - Pausing DMA
 - BMODE and I/O speed mode
 - DMA timeout

1.3.7.3 I/O Memory Management Unit (IOMMU)

- Supports virtual address to physical address mapping by hardware implementation
- Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI parallel address mapping
- Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI bypass function independently
- Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI pre-fetch independently
- Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI interrupt handing mechanism independently
- Supports 2 levels TLB (level1 TLB for special using, and level2 TLB for sharing)
- Supports TLB Fully cleared and Partially disabled
- Supports trigger PTW behavior when TLB miss
- Supports checking the permission

1.3.7.4 Message Box (MSGBOX)

• Supports communication between two CPUs through one way channels. Each CPU has one MSGBOX and can only read or write in one communication

- CPUX_MSGBOX: CPUS/RISC-V write; ARM CPU read
- CPUS_MSGBOX: ARM CPU/RISC-V write; CPUS read
- RISCV_MSGBOX: ARM CPU/CPUS write; RISC-V read
- The channel between two CPU has 4 channels, and the FIFO depth of a channel is 8 x 32 bits
- Supports interrupts

1.3.7.5 Power Reset Clock Management (PRCM)

- Two PRCMs in CPUS domain: PRCM and MCU_PRCM
- 1 PLL
- CPUS Clock Configuration
- APBS Clock Configuration
- CPUS Module Clock Configuration
- CPUS Module BUS Gating and Reset
- RAM configure Control for PRCM

1.3.7.6 RTC

- Provides a 16-bit counter for counting day, 5-bit counter for counting hour, 6-bit counter for counting minute, 6-bit counter for counting second
- External connect a 32.768 kHz low-frequency oscillator for count clock
- Timer frequency is 1 kHz
- Configurable initial value by software anytime
- Supports fanout function of internal 32K clock
- Supports timing alarm, and generates interrupt and wakeup the external devices
- 8 general purpose registers for storing power-off information in AON domain

1.3.7.7 Spinlock

- Supports 32 lock units
- Two kinds of lock status: locked and unlocked
- Lock time of the processor is predictable (less than 200 cycles)

1.3.7.8 Thermal Sensor Controller (THS)

- Two THS controllers
 - THS0, including TSENSOR4

- THS1, including TSENSOR0, TSENSOR1, and TSENSOR2
- Temperature accuracy: $\pm 5^{\circ}$ C from -40°C to 60°C, $\pm 3^{\circ}$ C from -60°C to +125°C
- Averaging filter for thermal sensor reading
- Supports over-temperature protection interrupt and over-temperature alarm interrupt

1.3.7.9 Timer

- Configurable counting clock: 32KHz, 24MHz, 16MHz, or 200MHz
- Programmable 56-bit down timer
- Two working modes: periodic mode and single count mode
- Generates an interrupt when the count is decreased to 0

1.3.7.10 Watchdog Timer (WDT)

- Supports 12 initial values
- Supports the generation of timeout interrupts
- Supports the generation of reset signals
- Supports Watchdog Restart

1.3.8 Audio Subsystem

1.3.8.1 Audio Codec

- Two audio digital-to-analog converter (DAC) channels
 - 16-bit and 20-bit sample resolution
 - 8 kHz to 192 kHz DAC sample rate
 - 100 ± 2 dB SNR@A-weight, -85 ± 3 dB THD+N
- Three audio outputs
 - One stereo headphone output: HPOUTL/R
 - Two differential lineout outputs: LINEOUTLP/N and LINEOUTRP/N
- Three audio analog-to-digital converter (ADC) channels
 - 16-bit and 20-bit sample resolution
 - 8 kHz to 48 kHz ADC sample rate
 - 95 ± 3 dB SNR@A-weight, -80 ± 3 dB THD+N
- Three differential microphone inputs: MICIN1P/1N, MICIN2P/2N, and MICIN3P/3N (for echo reduction)

- Two low-noise analog microphone bias outputs: MBIAS and HBIAS
- Supports Dynamic Range Controller adjusting the DAC playback and ADC recording
- One 128x20-bits FIFO for DAC data transmit, one 128x20-bits FIFO for ADC data receive
- Programmable FIFO thresholds
- Supports interrupts and DMA
- Internal ALDO output for AVCC

1.3.8.2 I2S/PCM

- Four I2S/PCM external interfaces (I2S0, I2S1, I2S2, and I2S3) for connecting external power amplifier and MIC ADC
- Compliant with standard Philips Inter-IC sound (I2S) bus specification
 - Left-justified, Right-justified, PCM mode, and Time Division Multiplexing (TDM) format
 - Programmable PCM frame width: 1 BCLK width (short frame) and 2 BCLKs width (long frame)
- FIFOs for transmitting and receiving data
 - Programmable FIFO thresholds
 - 128 depth x 32-bit width TXFIFO and 64 depth x 32-bit width RXFIFO
- Supports multiple function clocks
 - Clock up to 24.576 MHz Data Output of I2S/PCM in Master mode (Only if the IO PAD and Peripheral I2S/PCM satisfy Timing Parameters)
 - Clock up to 12.288 MHz Data Input of I2S/PCM in Master mode
- Supports TX/RX DMA slave interface
- Supports multiple application scenarios
 - Up to 16 channels (fs = 48 kHz) which has adjustable width from 8-bit to 32-bit
 - Sample rate from 8 kHz to 384 kHz (sample rate * channel * slot width ≤ 24.576 MHz)
 - 8-bit u-law and 8-bit A-law companded sample
- Supports master/slave mode

1.3.8.3 DMIC

- Supports maximum 8 digital PDM microphones
- Supports sample rate from 8 kHz to 48 kHz

1.3.8.4 One Wire Audio (OWA)

- One OWA TX and One OWA RX
- Compliance with S/PDIF interface
- IEC-60958 and IEC-61937 transmitter and receiver functionality
- IEC-60958 supports data formats: 16 bits, 20 bits, and 24 bits
- TXFIFO and RXFIFO
 - One 128×24bits TXFIFO and one 64×24bits RXFIFO for audio data transfer
 - Programmable FIFO thresholds
- Supports TX/RX DMA slave interface
- Multiple function clock
 - Separate clock for OWA TX and OWA RX
 - The clock of TX function includes 24.576 MHz and 22.5792 MHz
 - The clock of RX function includes 24.576*8 MHz
- Supports Hardware Parity On TX/RX
 - Hardware Parity generation on the transmitter
 - Hardware Parity checking on the receiver
- Supports channel status capture on the receiver
- Supports channel sample rate capture on the receiver
- Supports insertion detection for the receiver
- Supports channel status insertion for the transmitter

1.3.9 Security System

1.3.9.1 Crypto Engine (CE)

- Symmetrical algorithm:
 - AES symmetrical algorithm
 - > Key size: 128/192/256 bits
 - ➤ CFB mode includes: CFB1, CFB8, CFB64, and CFB128
 - CTR mode includes: CTR16, CTR32, CTR64, and CTR128
 - > Supports ECB, CBC, CTS, OFB, CBC-MAC, and GCM modes
 - DES symmetrical algorithm
 - > CTR mode, includes: CTR16, CTR32, and CTR64

- Supports ECB, CBC, and CBC-MAC mode
- Supports 3DES
- SM4 symmetrical algorithm supports ECB and CBC mode
- Hash algorithms
 - Support MD5, SHA1, SHA224, SHA256, SHA384, SHA512, and SM3
 - Support HMAC-SHA1, HMAC-SHA256
- Random bit generator algorithms
 - Support PRNG, 175 bits seed width, and output with multiple of 5 words
 - Support TRNG, post-process by hardware with SHA256, output with multiple of 8 words
- Public key algorithms
 - Support RSA public key algorithms: 512/1024/2048/3072/4096-bit width
 - Support ECC public key algorithms: 160/224/256/384/521-bit width
 - Support SM2 algorithms

1.3.9.2 Security ID (SID)

- 4 Kbits eFuse
- Supports secure and non-secure world in eFuse
- The register configuration of SID is always in non-secure world
- Backup eFuse information by using SID_SRAM
- One-time programming
- Selecting double-bit check by parameter definition
- Data scrambling
- Reading and writing protection

1.3.9.3 Secure Memory Control (SMC)

- The SMC is always secure, only secure CPUX can access the SMC
- Sets secure area of DRAM
- Supports Master and address protection
- Sets secure property that Master accesses to DRAM
- Sets DRM area
- Maximum 16 regions and Master has access to each region

1.3.9.4 Secure Peripherals Control (SPC)

- The SPC is always secure, only secure CPU can access the SPC
- Sets secure property of peripherals

1.3.10 External Peripherals

1.3.10.1 CIR Receiver (CIR_RX)

- One CIR_RX interface in CPUX domain and one CIR_RX interface in CPUS domain
- Full physical layer implementation
- Supports NEC format infra data
- Supports CIR for remote control
- 64x8 bits FIFO for data buffer
- Sample clock up to 1 MHz

1.3.10.2 CIR Transmitter (CIR_TX)

- One CIR_TX interface in CPUX domain
- Full physical layer implementation
- Arbitrary wave generator
- Configurable carrier frequency
- Handshake mode and waiting mode of DMA
- 128 bytes FIFO for data buffer
- Supports Interrupts and DMA

1.3.10.3 GMAC

- One GMAC interface (GMAC) for connecting external Ethernet PHY
- 10/100/1000 Mbit/s Ethernet port with RGMII and RMII interfaces
- Compliant with IEEE 802.3-2002 standard
- Supports both full-duplex and half-duplex operations
- Programmable frame length to support Standard or Jumbo Ethernet frames with sizes up to 16 KB
- Supports a variety of flexible address filtering modes
- Separate 32-bit status returned for transmission and reception packets
- Optimization for packet-oriented DMA transfers with frame delimiters

- Supports linked-list descriptor list structure
- Descriptor architecture, allowing large blocks of data transfer with minimum CPU intervention; each descriptor can transfer up to 4 KB of data
- Comprehensive status reporting for normal operation and transfers with errors
- 2 KB TXFIFO for transmission packets and 8 KB RXFIFO for reception packets
- Programmable interrupt options for different operational conditions
- Provides the management data input/output (MDIO) interface for PHY device configuration and management with configurable clock frequencies

1.3.10.4 General Purpose ADC (GPADC)

- 4-ch successive approximation register (SAR) analog-to-digital converter (ADC)
- 64 FIFO depth of data register
- 12-bit sampling resolution and 10-bit precision
- Power reference voltage: AVCC, analog input voltage range: 0 to AVCC
- Maximum sampling frequency up to 1 MHz
- Supports three operation modes: single conversion mode, continuous conversion mode, burst conversion mode

1.3.10.5 LEDC

- Configurable LED output high/low level width
- Configurable LED reset time
- LEDC data supports DMA configuration mode and CPU configuration mode
- Maximum 1024 LEDs serial connect
- Configurable interval time between data packets and frame data
- Configurable RGB display mode

1.3.10.6 Low Rate ADC (LRADC)

- 2-ch LRADC input
- 6-bit resolution
- Sampling rate up to 2 KHz
- Supports hold key and general key
- Supports normal, continue and single work mode
- Power supply voltage:1.8V, power reference voltage:1.35V

1.3.10.7 USB2.0 DRD

- One USB2.0 DRD (USB0), with integrated USB 2.0 analog PHY
- Complies with USB2.0 Specification
- USB Host that supports the following:
 - Compatible with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0
 - Compatible with Open Host Controller Interface (OHCI) Specification, Version 1.0a
 - Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s), and Low-Speed (LS, 1.5 Mbit/s)
 - Supports only 1 USB Root port shared between EHCI and OHCI
- USB Device that supports the following:
 - Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s)
 - Supports bi-directional endpoint0 (EP0) for Control transfer
 - Up to 10 user-configurable endpoints (EP1 IN/OUT, EP2 IN/OUT, EP3 IN/OUT, EP4 IN/OUT, EP5 IN/OUT) for Bulk transfer, Isochronous transfer and Interrupt transfer
 - Up to (8 KB + 64 Bytes) FIFO for all EPs (including EP0)
 - Supports interface to an external Normal DMA controller for every EP
- Supports an internal DMA controller for data transfer with memory
- Supports High-Bandwidth Isochronous & Interrupt transfers
- Automated splitting/combining of packets for Bulk transfers
- Supports point-to-point and point-to-multipoint transfer in both Host and Peripheral modes
- Includes automatic PING capabilities
- Soft connect/disconnect function
- Performs all transaction scheduling in hardware
- Power optimization and power management capabilities
- Device and host controller share an 8K SRAM and a physical PHY

1.3.10.8 USB2.0 HOST

- One USB 2.0 HOST (USB1), with integrated USB 2.0 analog PHY
- Industry-standard AMBA High-Performance Bus (AHB), fully compliant with the AMBA Specification, Revision 2.0
- 32-bit Little Endian AMBA AHB Slave Bus for Register Access
- 32-bit Little Endian AMBA AHB Master Bus for Memory Access
- An internal DMA Controller for data transfer with memory

- Compatible with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0
- Compatible with Open Host Controller Interface (OHCI) Specification, Version 1.0a
- Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s) and Low-Speed (LS, 1.5 Mbit/s) Device
- Supports the UTMI+ Level 3 interface and 8-bit bidirectional data buses
- Supports only 1 USB Root port shared between EHCl and OHCl

1.3.10.9 PCle2.1&USB3.1 System

PCIe2.1&USB3.1 system contains 1 PCIe2.1&USB3.1 combo PHY, 1 PCIe2.1 controller and 1 USB3.1 GEN1 DRD controller.

PCIe2.1

- Complies with PCI Express Base 2.1 Specification
- Only supports Root Complex (RC) mode
- Embedded PCI Express PHY, supports x1 Gen2 (5.0 Gbit/s) lane
- Maximum payload size: 1024 bytes
- Supports 8 Inbound windows and 8 Outbound window
- 4 writing channels and 4 reading channels for embedded DMA
- Supports Message Signaled Interrupts (MSI)

USB3.1 DRD

USB2.0 PHY and USB3.1 PHY share the same controller. They cannot be used simultaneously.

- Compliant with USB3.1 GEN1 Specification
- One USB 2.0 UTMI+ PHY (USB2)
- One USB3.1 PIPE PHY (USB3)
- USB3.1 DRD Device mode supports the following:
 - Super-Speed (SS, 5 Gbit/s) for USB3.1 PHY
 - High-Speed (HS, 480 Mbit/s) and Full-Speed (FS, 12-Mbit/s) for USB2.0 PHY
- USB3.1 DRD HOST mode supports the following:
 - Super-Speed (SS, 5 Gbit/s) for USB3.1 PHY
 - High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s) and Low-Speed (LS, 1.5 Mbit/s) for USB2.0 PHY

- Supports Device or Host operation at a time
- AXI interface for DMA operation
- Reading and writing access to Control and Status Registers (CSRs) through AHB Slave interface
- Up to 10 Endpoints, including bi-directional control Endpoint 0 in Device mode:
 - 5 IN Endpoints: User EP1 IN, EP2 IN, EP3 IN, EP4 IN, Control EP0 IN
 - 5 OUT Endpoints: User EP1 OUT, EP2 OUT, EP3 OUT, EP4 OUT, Control EP0 OUT
- Simultaneous IN and OUT transfer in Super-Speed mode
- Dual-port interfaces for TX data buffering, RX data prefetching, descriptor caching, and register caching
- Three RAMs: Rx data FIFO RAM, TX data FIFO RAM, and descriptor/register Cache RAM
- Hardware handles all data transfer
- Implements both static and dynamic power reduction techniques at multiple levels

1.3.10.10 PWM

- Up to 30 PWM channels and 4 PWM controllers: PWM [19:0] in CPUX domain, S-PWM [9:0] in CPUS domain
 - PWM [15:0] for PWMCTRL0 controller
 - PWM [19:16] for PWMCTRL1 controller
 - S-PWM [1:0] for S_PWMCTRL controller
 - S-PWM [9:2] for MCU_PWMCTRL controller
- Maximum 16 independent PWM channels for PWM controller
 - Supports PWM continuous mode output
 - Supports PWM pulse mode output, and the pulse number is configurable
 - Output frequency range:
 - > 0 to 24 MHz (when the clock source is DCXO24M)
 - > 0 to 100 MHz (when the clock source is APB1 clock)
 - Various duty-cycle: 0% to 100%
 - Minimum resolution: 1/65536
- Maximum 8 complementary pairs output
 - The pairing methods for each PWM controller are as follows. The components are internal PWM channels:
 - Maximum 8 pairs for PWMCTRL0:

PWM0 + PWM1, PWM2 + PWM3, PWM4 + PWM5, PWM6 + PWM7, PWM8 + PWM9, PWM10 + PWM11, PWM12 + PWM13, PWM14 + PWM15

➤ Maximum 2 pairs for PWMCTRL1:

PWM0+PWM1, PWM2+PWM3

Maximum 1 pair for S_PWMCTRL:

PWM0+PWM1

Maximum 4 pairs for MCU_PWMCTRL:
PWM0+PWM1, PWM2+PWM3, PWM4+PWM5, PWM6+PWM7

- Supports dead-zone generator, and the dead-zone time is configurable
- Maximum 4 group of PWM channel output for controlling stepping motors
 - Supports any plural channels to form a group, and output the same duty-cycle pulse
 - In group mode, the relative phase of the output waveform for each channel is configurable
- Maximum 16 channels capture input
 - Supports rising edge detection and falling edge detection for input waveform pulse
 - Supports pulse-width measurement for input waveform pulse

1.3.10.11 SPI and SPI_DBI

- Up to 4 SPI controllers
 - SPI0, SPI1, and SPI2 in CPUX Domain
 - S-SPI0 in CPUS Domain
- The SPI0, SPI2, and S-SPI0 support SPI mode; The SPI1 supports SPI mode and display bus interface (DBI) mode

SPI mode

- Multiple SPI modes:
 - Master mode and slave mode for standard SPI
 - Master mode for Dual-Output/Dual-Input SPI and Dual I/O SPI
 - Master mode for Quad-Output/Quad-Input SPI
 - Master mode for 3-wire SPI, with programmmable serial data frame length of 1 bit to 32 bits
- Maximum clock frequency: 100MHz
- TX/RX DMA slave interface
- 8-bit wide by 64-entry FIFO for both transmitting and receiving data

- Supports mode0, mode1, mode2, and mode3
- Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable

DBI mode

- DBI Type C 3 Line/4 Line Interface Mode
- 2 Data Lane Interface Mode
- RGB111/444/565/666/888 video format
- Maximum resolution of RGB666 240 x 320@30Hz with single data lane
- Maximum resolution of RGB888 240 x 320@60Hz or 320 x 480@30Hz with dual data lane
- Tearing effect
- Software flexible control video frame rate

1.3.10.12 SPI Flash Controller (SPIFC)

- Supports multiple SPI modes
 - Standard SPI
 - Dual-Input/Dual-Output SPI and Dual-I/O SPI
 - Quad-Input/Quad-Output SPI, Quad-I/O SPI, and QPI
 - Octal-Input/Octal-Output SPI, Octal-I/O SPI, and OPI
 - 3-wire SPI with programmable serial data frame length of 1 bit to 32 bits
- Supports STR mode and DTR mode, and DTR mode supports DQS signal
- High Speed Clock Frequency
 - 150MHz for STR Mode
 - 100MHz for DTR Mode
- Software Write Protection
 - Write protection for all/portion of memory via software
 - Top/Bottom Block protection
- Programmable delay between transactions
- Supports Mode0, Mode1, Mode2 and Mode3
- Supports control signal configuration
 - Up to four chip selects to support multiple peripherals
 - Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable

1.3.10.13 Two Wire Interface (TWI)

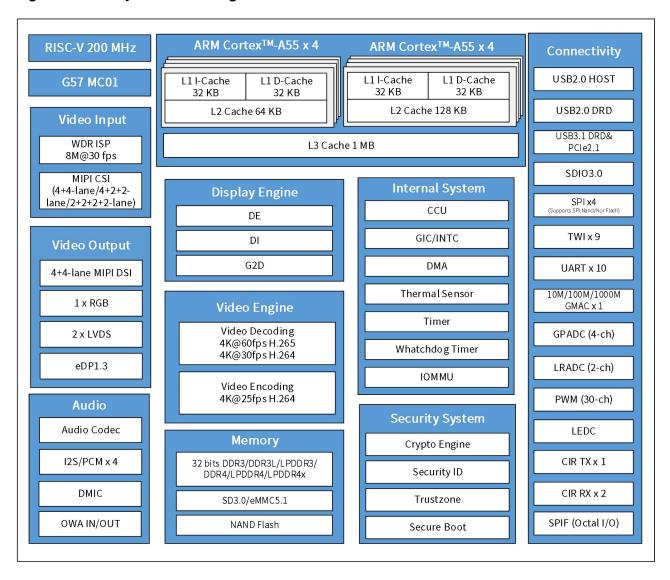
- Up to 9 TWI controllers
 - 6 TWI controllers in CPUX domain: TWI0, TWI1, TWI2, TWI3, TWI4, and TWI5
 - 3 TWI controllers in CPUS domain: S_TWI0, S_TWI1, and S_TWI2
- Compliant with I2C bus standard
- 7-bit and 10-bit device addressing modes
- Standard mode (up to 100 Kbit/s) and fast mode (up to 400 Kbit/s)
- Supports general call and start byte
- Master mode supports the following:
 - Bus arbitration in the case of multiple master devices
 - Clock synchronization and bit and byte waiting
 - Packet transmission and DMA
- Slave mode supports Interrupt on address detection

1.3.10.14 UART

- Up to 10 UART controllers
 - 8 UART controllers in CPUX domain: UART0, UART1, UART2, UART3, UART4, UART5, UART6, and UART7
 - 2 UART controllers in CPUS domain: S_UART0 and S_UART1
- Compatible with industry-standard 16450/16550 UARTs
- Two separate FIFOs: one is RX FIFO, and the other is TX FIFO
 - Each of them is 64 bytes for UARTO, S_UARTO, and S_UART1
 - Each of them is 128 bytes for UART1, UART2, UART3, UART4, UART5, UART6, and UART7
- The working reference clock is from the APB bus clock
 - Speed up to 10 Mbit/s with 160 MHz APB clock (excluding S_UART0 and S_UART1)
 - Speed up to 5 Mbit/s with 80 MHz APB clock (excluding S_UART0 and S_UART1)
 - Speed up to 3.75 Mbit/s with 60 MHz APB clock (excluding S_UART0 and S_UART1)
 - Speed up to 1.5 Mbit/s with 24 MHz APB clock
- 5 to 8 data bits for RS-232 format, or 9 bits RS-485 format
- 1, 1.5 or 2 stop bits
- Programmable parity (even, odd, or no parity)
- Supports TX/RX DMA slave controller interface

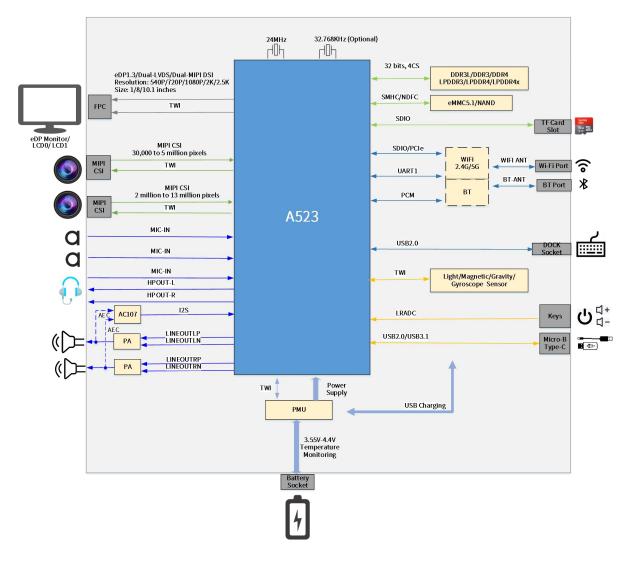
- Supports software/hardware flow control
- Supports IrDA-compatible slow infrared (SIR) format
- Supports auto-flow by using CTS & RTS (excluding UART0, S_UART0, and S_UART1)

1.3.11 Package


FCCSP 522 balls, 15 mm x 15 mm body size, 0.5 mm ball pitch, 0.3 mm ball size

1.4 Block Diagram

The following figure shows the system block diagram of the A523.


Figure 1-1 A523 System Block Diagram

The following figure shows the medium- and high-end tablet solution of the A523.

Figure 1-2 Medium and High-End Tablet Solution

