
Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 40

2 System

2.1 Memory Mapping
Module Address Size(Bytes)
BROM & SRAM
S_BROM 0x0000 0000---0x0000 AFFF 44 KB

M_BROM 0x0001 0000---0x0001 8FFF 36 KB

MCU0 SRAM 0x0002 0000---0x0003 FFFF
128 KB
The local SRAM is switched to
system boot.

SRAM A2 0x0004 0000---0x0006 3FFF 16 KB+128 KB
GPU_SYS
GPU 0x0180 0000---0x0183 FFFF 256 KB
VE_SYS
VE 0x01C0 E000---0x01C0 EFFF 4 KB

SP0

GPIO 0x0200 0000---0x0200 07FF 2 KB
SPC 0x0200 0800---0x0200 0BFF 1 KB
PWMCTRL0 0x0200 0C00---0x0200 0FFF 1 KB
CCU 0x0200 1000---0x0200 1FFF 4 KB
CIR_TX 0x0200 3000---0x0200 33FF 1 KB
CIR_RX 0x0200 5000---0x0200 53FF 1 KB
LEDC 0x0200 8000---0x0200 83FF 1 KB
GPADC 0x0200 9000---0x0200 93FF 1 KB
THS1 0x0200 9400---0x0200 97FF 1 KB
LRADC 0x0200 9800---0x0200 9BFF 1 KB
THS0 0x0200 A000---0x0200 A3FF 1 KB
IOMMU 0x0201 0000---0x0201 FFFF 64 KB
NSI 0x0202 0000---0x0202 FFFF 64 KB
CPUX_WDT 0x0205 0000---0x0205 0FFF 4 KB
PWMCTRL1 0x0205 1000---0x0205 13FF 1 KB
NSI_CPU 0x0207 1000---0x0207 13FF 1 KB

SP1

UART0 0x0250 0000---0x0250 03FF 1 KB
UART1 0x0250 0400---0x0250 07FF 1 KB
UART2 0x0250 0800---0x0250 0BFF 1 KB
UART3 0x0250 0C00---0x0250 0FFF 1 KB

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 41

Module Address Size(Bytes)
UART4 0x0250 1000---0x0250 13FF 1 KB
UART5 0x0250 1400---0x0250 17FF 1 KB
UART6 0x0250 1800---0x0250 1BFF 1 KB
UART7 0x0250 1C00---0x0250 1FFF 1 KB
TWI0 0x0250 2000---0x0250 23FF 1 KB
TWI1 0x0250 2400---0x0250 27FF 1 KB
TWI2 0x0250 2800---0x0250 2BFF 1 KB
TWI3 0x0250 2C00---0x0250 2FFF 1 KB
TWI4 0x0250 3000---0x0250 33FF 1 KB
TWI5 0x0250 3400---0x0250 37FF 1 KB

SH0

SYSCTRL 0x0300 0000---0x0300 0FFF 4 KB
CPUX_TIMER 0x0300 8000---0x0300 83FF 1 KB
DMAC 0x0300 2000---0x0300 2FFF 4 KB
CPUX_MSGBOX 0x0300 3000---0x0300 3FFF 4 KB
SPINLOCK 0x0300 5000---0x0300 5FFF 4 KB
SID 0x0300 6000---0x0300 6FFF 4 KB
CE_NS 0x0304 0000---0x0304 07FF 2 KB
CE_S 0x0304 0800---0x0304 0FFF 2 KB
MEMC 0x0310 2000---0x0330 1FFF 2 M
MEMC_SMC 0x0311 0000---0x0311 FFFF 64 KB
MEMC_COMMON 0x0312 0000---0x0312 FFFF 64 KB
MEMC_DDRC 0x0313 0000---0x0313 FFFF 64 KB
MEMC_PHY 0x0314 0000---0x0314 FFFF 64 KB
GIC 0x0340 0000---0x034E FFFF 15*64 KB

SH2

NDFC 0x0401 1000---0x0401 1FFF 4 KB
SMHC0 0x0402 0000---0x0402 0FFF 4 KB
SMHC1 0x0402 1000---0x0402 1FFF 4 KB
SMHC2 0x0402 2000---0x0402 2FFF 4 KB
SPI0 0x0402 5000---0x0402 5FFF 4 KB
SPI1 0x0402 6000---0x0402 6FFF 4 KB
SPI2 0x0402 7000---0x0402 7FFF 4 KB
USB0 0x0410 0000---0x041F FFFF 1 MB
USB1 0x0420 0000---0x042F FFFF 1 MB
GMAC 0x0450 0000---0x0450 FFFF 64 KB
SPIFC 0x047F 0000---0x047F 0FFF 4 KB
PCIE 0x0480 0000---0x04CF FFFF 5 MB
USB3 0x04D0 0000---0x04EF FFFF 2 MB
PCIE_USB3_TOP_AP 0x04F0 0000---0x04F7 FFFF 512 KB

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 42

Module Address Size(Bytes)
P
DE_SYS
DE 0x0500 0000---0x053F FFFF 4 MB
DI 0x0540 0000---0x0543 FFFF 256 KB
G2D 0x0544 0000---0x0547 FFFF 256 KB
VIDEO0_OUT_SYS
DISPLAY0_TOP 0x0550 0000---0x0550 0FFF 4 KB
TCON_LCD0 0x0550 1000---0x0550 1FFF 4 KB
TCON_LCD1 0x0550 2000---0x0550 2FFF 4 KB
TCON_TV1 0x0550 4000---0x0550 4FFF 4 KB
COMBOPHY_DSI0 0x0550 6000---0x0550 7FFF 8 KB
COMBOPHY_DSI1 0x0550 8000---0x0550 9FFF 8 KB
EDP 0x0572 0000---0x0572 3FFF 16 KB
VIDEO_IN_SYS
CSI 0x0580 0000---0x058F FFFF 1 MB
ISP 0x0590 0000---0x05CF FFFF 4 MB

APBS0

S_PPU1 0x0700 1400---0x0700 17FF 1 KB
S_SPC 0x0700 2000---0x0700 23FF 1 KB
PRCM 0x0701 0000---0x0701 FFFF 64 KB
CPUS_WDT 0x0702 0400---0x0702 07FF 1 KB
S_TWD 0x0702 0800---0x0702 0BFF 1 KB
S_PWMCTRL 0x0702 0C00---0x0702 0FFF 1 KB
S_INTC 0x0702 1000---0x0702 13FF 1 KB
S_GPIO 0x0702 2000---0x0702 27FF 2 KB
CPUS_CFG 0x0703 1000---0x0703 1FFF 4 KB
S_CIRRX 0x0704 0000---0x0704 03FF 1 KB
PCK600_CPU 0x0705 0000---0x0705 FFFF 64 KB
PCK600_QCHANNEL(
S_PPU)

0x0706 0000---0x0706 7FFF 32 KB

APBS1
S_UART0 0x0708 0000---0x0708 03FF 1 KB
S_UART1 0x0708 0400---0x0708 07FF 1 KB
S_TWI0 0x0708 1400---0x0708 17FF 1 KB
S_TWI1 0x0708 1800---0x0708 1BFF 1 KB
S_TWI2 0x0708 1C00---0x0708 1FFF 1 KB
AHBS
RTC 0x0709 0000---0x0709 03FF 1 KB
CPUS_TIMER 0x0709 0400---0x0709 07FF 1 KB
S_SPI0 0x0709 2000---0x0709 2FFF 4 KB
S_SPINLOCK 0x0709 3000---0x0709 3FFF 4 KB

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 43

Module Address Size(Bytes)
CPUS_MSGBOX 0x0709 4000---0x0709 4FFF 4 KB
MCU_APB0
MCU_PRCM 0x0710 2000---0x0710 2FFF 4 KB
MCU_PWMCTRL 0x0710 3000---0x0710 33FF 1 KB
AUDIO CODEC 0x0711 0000---0x0711 0FFF 4 KB
DMIC 0x0711 1000---0x0711 13FF 1 KB
I2S0 0x0711 2000---0x0711 2FFF 4 KB
I2S1 0x0711 3000---0x0711 3FFF 4 KB
I2S2 0x0711 4000---0x0711 4FFF 4 KB
I2S3 0x0711 5000---0x0711 5FFF 4 KB
OWA 0x0711 6000---0x0711 63FF 1 KB
MCU_AHB
MCU_DMAC 0x0712 1000---0x0712 1FFF 4 KB
MCU_TIMER 0x0712 3000---0x0712 33FF 1 KB
RISCV_SYS
RISCV_CFG 0x0713 0000---0x0713 0FFF 4 KB
RISCV_WDT 0x0713 2000---0x0713 2FFF 4 KB
RISCV_LCNT 0x0713 4000---0x0713 4FFF 4 KB
RISCV_MSGBOX 0x0713 6000---0x0713 6FFF 4 KB
MCU_SRAM

SRAMA3_0 0x0728 0000---0x072B FFFF
256 KB (SRAMA3_0 can not
be used cross 256 KB
boundary)

SRAMA3_1 0x072C 0000---0x072F FFFF
256 KB (SRAMA3_1 can not
be used cross 256 KB
boundary)

SRAMA3_2 0x0730 0000---0x0737 FFFF 512 KB
CPUX Related
CPU_SUBSYS_CTRL 0x0800 0000---0x0800 0FFF 4 KB
TIMESTAMP_STA 0x0801 0000---0x0801 0FFF 4 KB
TIMESTAMP_CTRL 0x0802 0000---0x0802 0FFF 4 KB
APB_ROM1 0x0880 1000---0x0880 1FFF 4 KB
CTI 0x0880 3000---0x0880 3FFF 4 KB
CS_TS_CTRL 0x0880 5000---0x0880 5FFF 4 KB
CS_TS_READ 0x0880 7000---0x0880 7FFF 4 KB
TPIU 0x0880 9000---0x0880 9FFF 4 KB
ETB 0x0880 B000---0x0880 BFFF 4 KB
APB_ROM2 0x0881 1000---0x0881 1FFF 4 KB
ATB_FUNNEL 0x0881 3000---0x0881 3FFF 4 KB
CLUSTER_CFG 0x0881 5000---0x0881 5FFF 4 KB
CPU_PLL_CFG 0x0881 7000---0x0881 7FFF 4 KB
CLUSTER_DBUG 0x0980 0000---0x09BF FFFF 4 MB

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 44

Module Address Size(Bytes)
PCIE
PCIE_SLV 0x2000 0000---0x2FFF FFFF 256 MB
RISCV Related (Only RISC-V access)
RISCV_CLINT 0xE000 0000---0xE000 FFFF 64 KB
RISCV_CLIC 0xE080 0000---0xE080 4FFF 20 KB
RISCV_SYSMAP 0xEFFF F000---0xEFFF FFFF 4 KB

DRAM Space

DRAM SPACE 0x4000 0000---0x13FFF FFFF

4 GB
RISC-V core accesses the
DRAM address:
0x4004 0000---0x7FFF FFFF

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 45

2.2 ARM CortexTM-A55 System(CPUX)

2.2.1 Overview

A523 CPU architecture adopts DynamIQ technology. The CPUX system includes DynamIQ Shared
Unit (DSU), DynamIQ cluster, GIC600 distributor, coresight subsystem, and timestamp module.
The features of the CPUX cores and DSU in DynamIQ cluster are as follows.

CPUX Cores

 Two sets of ARM CortexTM-A55 cores in a DynamIQ big. LITTLE configuration

 Memory subsystem features

- 32 KB L1 I-cache and D-cache

- Optional 64KB L2 cache for ‘LITTLE’ cores

- Optional 128KB L2 cache for ‘big’ cores

- Separate L1 instruction side memory subsystem with a Memory Management Unit
(MMU)

 A64, A32, and T32 instruction sets running on ARMv8-A architecture ISA

 Both the AArch32 and AArch64 execution states at all Exception levels (EL0 to EL3).

 In-order pipeline with direct and indirect branch prediction.

 Optional Data Engine Unit implementing the advanced Single Instruction Multiple Data
(SIMD) and floating-point architecture

 Optional Cryptography extensions

 Separate L1 instruction side memory system with a Memory Management Unit (MMU)

 ARM TrustZone® technology

 Generic Interrupt Controller (GIC) interface connecting an external distributor

 Generic Timers interface supporting 64-bit count input from an external system counter

 Reliability, Availability, and Serviceability (RAS) extension

 Debug and trace capabilities

NOTE

Cryptography extensions are available only when Data Engine unit is present.

DSU

DSU comprises the L3 cache, the Snoop Control Unit (SCU), internal interfaces to the cores, and
external interfaces to the SoC.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 46

 Memory subsystem features

- 1024 KB L3 cache

- Optional 16-way set-associative L3 cache, 64-byte cache line

- L3 memory system can be clocked at a rate synchronous to the external system
interconnect or at integer multiples.

- L3 cache partial power down

- Optional cache protection in the form of Error Correcting Code (ECC) on L3 cache RAM
instances

- 40-bit, 44-bit, and 48-bit physical addresses

 Main bus interface adopting AMBA 5 ACE protocol or AMBA 5 CHI protocol

 Optional 128-bit wide and I/O-coherent Accelerator Coherency Port (ACP)

 Optional 64-bit wide peripheral port

 ARMv8.2 debug logic

 Supports RAS

2.2.2 Block diagram

The following figure shows the block diagram of CPUX system.

Figure 2-1 CPUX System Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 47

The following table describes the components of A523 DynamIQ big. LITTLE cluster.

Table 2-1 CPUX DynamIQ Cluster Components

Components Description
CPU bridges For communication between cores and DSU buffers.

SCU
The SCUmaintains coherency and cache-to-cache transmission for
all CPUX cores.

Debug and trace
components

Each core allows tracing supported by Embedded Trace Macrocell
(ETM). The trigger events from CPUX cores are transmitted through
debug APBmaster/slave interface.

Clock and power
management

The cluster supports low power mode and is controlled by a low
power control module outside the cluster power-down domain. DSU
and each CPUX core has independent P-channels. They could
control the power mode through P-channels.

L3 memory interfaces To access memory and peripherals.

DSU system control
registers

Include information related to CPUX core configuration, such as:
 Power management of the cluster
 QOS and ID control of CHI bus
 DSU hardware configuration information
 L3 cache hit andmiss count information

2.2.3 Functional Descriptions

2.2.3.1 Power Block System

Power Domain

The following table describes the power domain of the CPUX.

Table 2-2 CPUX Power domain

Power Domain Power Switch Description

VDD-CPUB Yes
Power source of Core4-Core7. It is controlled by the PPU
for each core.

VDD-CPUL Yes
Power source of the cluster top and Core0-Core3. It is
controlled by the PPU for the cluster top and each core.

VDD-SYS No
Power source of CPUX system excluding the cluster top
and CPUX cores. It is the same power supply of the SoC
system.

Power Mode

CPUX cores support four power modes:

 Debug Recovery

 ON

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 48

 OFF (emulated)

 OFF

DSU supports the following power modes

 ON: SFONLY_ON、 1/4 ON、 1/2 ON、 3/4 ON、 FULL ON

 Functional Retention: SFONLY FUNC_RET, ¼FUNC_RET, ½FUNC_RET, ¾FUNC_RET, FULL
FUNC_RET

 OFF and OFF_EMU

2.2.3.2 CPU PLL Distribution and Clock Sources

The CPUX system contains three linear frequency modulation PLLs: CPU_L_PLL, CPU_DSU_PLL,
and CPU_B_PLL. The following table shows the clock sources of CPUX cores and DSU.

Table 2-3 Clock Sources of CPUX Cores and DSU

CPUX Cores Clock Sources Description

Core0-Core3

CLK32K

● Generally, CPU_L_PLL is the main clock
source of Core0-Core3. For all clock sources
of Core0-Core3, refer to CPUA_CLK_REG
register.

● Generally, CPU_B_PLL is the main clock
source of Core4-Core7. For all clock sources
of Core4-Core7, refer to CPUB_CLK_REG
register.

● Generally, CPU_DSU_PLL is the main clock
source of DSU. For all clock sources of DSU,
refer to DSU_CLK_REG register.

CLK16M_RC
HOSC
PERI0_600M
CPU_L_PLL

Core4-Core7

CLK32K
CLK16M_RC
HOSC
PERI0_600M
CPU_PLL3CPU_B_PLL

DSU

CLK32K
CLK16M_RC
HOSC
PERI0_600M
PLL_PERI0(2X)
CPU_DSU_PLL

2.2.3.3 CPUX Reset System

The following table shows the input reset signal of the whole CPUX system.

Table 2-4 Reset signal description of CPUX System

Reset signal Source Description

DBGSYS_RST CCU For detailed information, please refer to the description of
DBGSYS_RST in section 2.5.6.70 0x078C DBGSYS Bus Gating Reset

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 49

Reset signal Source Description

Register (Default Value: 0x0000_0000).

DSU_RSTN PPU Whether to reset is controlled by PPU according to the power mode.

CORE_RSTN PPU Whether to reset is controlled by PPU according to the power mode.

2.2.4 Programming Guidelines

The following takes CPU_L_PLL as an example, CPU_DSU_PLL and CPU_B_PLL are the same.

NOTE

It is not suggested to enable or disable the PLLs during usage. When the clock is not required, it is
recommended to configure the PLL_OUTPUT_EN bit of PLL control register as 0.

2.2.4.1 Enabling the Linear Frequency Modulation PLLs

Step 1 Write 1 to the PLL_SSC_CLK_SEL bit (bit [29]) of CPU_L_PLL_SSC_REG register.

Step 2 Configure the N, M, and P factors of the CPU_L_PLL_CTRL_REG register.

Step 3 Write 1 to the PLL_PLL_EN bit (bit [31]) and the PLL_LDO_EN bit (bit [30]) of the
CPU_L_PLL_CTRL_REG register.

Step 4 Write 1 to the LOCK_ENABLE bit (bit [29]) of the CPU_L_PLL_CTRL_REG register.

Step 5 Write 1 to the PLL_UPDATE bit (bit [26]) of the CPU_L_PLL_CTRL_REG register.

Step 6 Wait for the value of the PLL_UPDATE bit to change to 0.

Step 7 Wait for the status of the Lock to change to 1.

Step 8 Delay 10 ms.

Step 9 Write 0 to the PLL_SSC_CLK_SEL bit (bit [29]) of CPU_L_PLL_SSC_REG register.

2.2.4.2 Configuring the Frequency of Linear Frequency Modulation PLLs

Step 1 Configure the PLL_SSC_STEP bit (bit [3:0]) of the CPU_L_PLL_SSC_REG register to select
required frequency modulation slope.

Step 2 Configure the PLL_SSC bit (bit [28:12]) of the CPU_L_PLL_SSC_REG register to set the
SSC ampltitude.

Step 3 Write 1 to the PLL_SSC_MODE bit (bit [31]) of the CPU_L_PLL_SSC_REG register to
enable linear frequency modulation.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 50

Step 4 Write 1 to the PLL_UPDATE bit (bit [26]) of the CPU_L_PLL_CTRL_REG register to update
PLL configuration parameters.

Step 5 Wait for the value of the PLL_UPDATE bit to change to 0.

Step 6 Configure the N factor of the CPU_L_PLL_CTRL_REG register.

Step 7 Write 1 to the PLL_UPDATE bit (bit [26]) of the CPU_L_PLL_CTRL_REG register to update
PLL configuration parameters.

Step 8 Wait for the value of the PLL_UPDATE bit to change to 0.

Step 9 Write 0 to the PLL_SSC_MODE bit (bit [31]) of the CPU_L_PLL_SSC_REG register to
disable linear frequency modulation.

Step 10 Write 1 to the PLL_UPDATE bit (bit [26]) of the CPU_L_PLL_CTRL_REG register to update
PLL configuration parameters.

Step 11 Wait for the value of the PLL_UPDATE bit to change to 0.

2.2.4.3 Disabling the Linear Frequency Modulation PLLs

Follow the steps below to disable the PLL:

Step 1 Write 0 to the PLL_PLL_EN bit (bit [31]) and the PLL_LDO_EN bit (bit [30]) of the
CPU_L_PLL_CTRL_REG register.

Step 2 Write 1 to the PLL_UPDATE bit (bit [26]) of the CPU_L_PLL_CTRL_REG register.

Step 3 Write 1 to the PLL_SSC_CLK_SEL bit (bit [29]) of CPU_L_PLL_SSC_REG register.

Step 4 Write 1 to the PLL_UPDATE bit (bit [26]) of the CPU_L_PLL_CTRL_REG register.

Step 5 Wait for the value of the PLL_UPDATE bit to change to 0.

Step 6 Write 0 to the PLL_SSC_CLK_SEL bit (bit [29]) of CPU_L_PLL_SSC_REG register.

2.2.5 Register list

Module Name Base Address Description
CPU_SUBSYS_CTRL 0x08000000 CPU Subsystem Control (4KB)
TIMESTAMP_STA 0x08010000 Timestamp Status Registers (4KB)
TIMESTAMP_CTRL 0x08020000 Timestamp Control Registers (4KB)
CPU_PLL_CFG 0x08817000 Cluster PLL configure (4KB)

2.2.5.1 CPU_SUBSYS_CTRL Register List

Register Name Offset Description
GENER_CTRL_REG0 0x0000 General Control Register0

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 89

2.3 RISC-V System (RISCV)

2.3.1 Overview

The RISC-V system includes RISC IP core and related peripheral devices (AHB_Decoder, AHB2APB,
RISCV_CFG, RISC_TIMESTAMP, and so on), which is able to be interconnected to MCU system by
MCU AHB Matrix.

The RISC-V system has the following features:

 Configurable start address via software

 Combined with PPU module, supporting standby in low-power mode and wake-up through
external interrupts

 Separate TIMERSTAMP supports timing immediately after reset is released

 Separate watchdog supports to reset the SoC system when the RISC-V systemmalfunctions

 Separate message box supports communicating with other modules

 Supports separate PMU check module

2.3.2 Block Diagram

The following figure shows the block diagram of RISC-V system.

Figure 2-2 RISC-V System Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 93

2.4 BROM System

2.4.1 Overview

The system has several ways to boot. It has an integrated on-chip Boot ROM (BROM) that is
considered the primary program-loader. On the startup process, the A523 starts to fetch the first
instruction from address 0x0, where is the BROM located at.

The BROM system is divided into two parts: the firmware exchange launch (FEL) module and the
Medium Boot module. FEL is responsible for writing the external data to the local NVM, and
Medium Boot is responsible for loading an effective and legitimate BOOT0 from NVM and
running.

The BROM system includes the following features:

 Supports CPU0 boot process

 Supports mandatory upgrade process through USB and SD card

 Supports GPADC0 pin and eFuse module to select the boot media type

 Supports normal booting and secure booting

 Secure BROM loads only certified firmware

 Ensures that the secure boot is in a trusted environment

2.4.2 Functional Description

2.4.2.1 Selecting the Boot Medium

The BROM system supports the following boot media:

 SD Card

 eMMC

 RAWNAND Flash

 SPI NOR Flash (Quad Mode and Single Mode)

 SPI NAND Flash

There are two ways to select the boot medium: GPADC Pin Select and eFuse Select. The BROM
will read the state of BOOT_MODE first, and then select the boot medium according to the state
of BOOT_MODE. The BOOT_MODE is the BROM_Config in the eFuse mapping.

The following table shows the BOOT_MODE setting:

Table 2-5 BOOT_MODE Setting

BOOT_MODE[0] Boot Select type
0 GPADC Selection
1 eFuse Selection

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 94

NOTE

The BOOT_MODE BIT is bit [0] of the eFuse register 0x03006210.

GPADC Boot Selection

If the state of the BOOT_MODE is 0, choose the GPADC Boot Selection.

If BROM failed to boot from the selected medium, it will try other media with the following
priority:

EMMC_USR -> EMMC_BOOT -> SLC_NAND -> MLC_NAND -> SPI_NOR -> SPI_NAND

And the medium selected by GPADC will be skipped.

For example, when BROM failed to boot from SPI NOR, it will try other media with the following
priority:

SPI NOR (selected by GPADC) -> EMMC_USR -> EMMC_BOOT -> SLC_NAND -> MLC_NAND ->
SPI_NOR (try at first, skipped) -> SPI_NAND

The following table shows GPADC Boot Select setting.

Table 2-6 GPADC Boot Select Setting

KEY_VALUE Boot Select type
0x00-0xB6 SD Card->MLC NAND->SLC NAND->try (except SPI in PJ)
0xB7-0x22B SD Card->SLC NAND->MLC NAND->try (except SPI in PJ)
0x22C-0x3AF SD Card->EMMC_USER->EMMC_BOOT->try (except SPI in PJ)
0x3B0-0x57B SD Card->EMMC_BOOT->EMMC_USER->try (except SPI in PJ)
0x57C-0x73C SD Card->SPI NOR->try (except SPI in PJ)
0x73D-0x8CC SD Card->SPI NAND->try (except SPI in PJ)
0x8CD-0xB49 SD Card->SPI NOR in PJ->try
0xB4A-0xE7C SD Card->SPI NAND in PJ->try
0x8CD-0xFFF Reserved

NOTE

When trying SPI NOR, BROM try 4 wire mode first, then 1 wire mode.

eFuse Boot Selection

If the state of the BOOT_MODE is 1, choose the eFuse Boot Selection.

The eFuse_Boot_Select_Cfg is divided into 3 groups and each group is 3-bit. The following table
shows the groups of eFuse_Boot_Select.

Table 2-7 Groups of eFuse_Boot_Select

eFuse_Boot_Select_Cfg [11:0] Description

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 95

eFuse_Boot_Select_Cfg [11:0] Description
eFuse_Boot_Select[3:0] eFuse_Boot_Select_1
eFuse_Boot_Select[7:4] eFuse_Boot_Select_2
eFuse_Boot_Select[11:8] eFuse_Boot_Select_3

These three groups take effect with the following priority:

eFuse_Boot_Select_1 -> eFuse_Boot_Select_2 -> eFuse_Boot_Select_3

For example, eFuse_Boot_Select_2 will not take effect unless eFuse_Boot_Select_1 is set as
0b1111(skip), eFuse_Boot_Select_3 will not take effect unless eFuse_Boot_Select_2 is set as
0b1111(skip), etc. If all three groups are set to 0b1111, no other groups can be used for boot
select, BROM assume “try” is selected.

In the Try mode, the BROM follows the order below to select the boot medium:

SD Card -> eMMC -> NAND FLASH -> SPI NOR -> SPI NAND

The following table shows the boot medium priority for the different values of
eFuse_Boot_Select_n, where n = [4:1].

Table 2-8 eFuse Boot Select Setting

eFuse_Boot_Select_n Bootmedia
0000 Try (except SPI in PJ)
0001 SLC NAND -> MLC NAND
0010 EMMC_USER -> EMMC_BOOT
0011 SPI NOR
0100 SPI NAND
0101 MLC NAND -> SLC NAND
0110 MMC_BOOT -> EMMC_USER
1011 SPI NOR in PJ
1100 SPI NAND in PJ

1111

When n is 1 or 2:
The boot medium is decided by the value of eFuse_Boot_Select_ (n +
1).
When n is 4:
Select the boot medium in Try mode.

NOTE

The status of the eFuse boot select pin is the bit [11:0] of the eFuse register 0x03006212.

2.4.2.2 Selecting the Boot Mode

For SoCs that have implemented and enabled the ARM TrustZone technology, there are two boot
modes: Normal BROMMode and Secure BROM Mode.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 96

Secure BROM Mode is designed to protect against attackers modifying the code or data areas in
the programmable memory.

During the startup process, the BROM will select the boot mode according to the value of the
Secure Enable bit. If the value of Secure Enable bit is 0, the system will boot in Normal BROM
Mode. Otherwise, it will boot in Secure BROM Mode.

NOTE

The System on Chip (SoC) supports the ARM TrustZone technology. If the Secure Enable Bit is
enabled, the BROM will be safely booted based on this ARM TrustZone technology.

Normal BROMMode

In Normal BROM Mode, the system boot starts from CPU0, and then the BROM will read the state
of the FEL pin. If the FEL pin is high, the system will jump to the fast boot process. If it is low, the
system will jump to the mandatory upgrade process.

The following figure shows the boot process in Normal BROMMode.

Figure 2-3 Boot Process in Normal BROMMode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 97

Secure BROMMode

The process of selecting the boot medium in Secure Boot Mode is the same as that in Normal
Boot Mode.

In Secure Boot Mode, after the boot medium is selected, the system additionally runs the
Security Boot software to authenticate the Sboot bin file.

The following figure shows the authentication process.

Figure 2-4 Authentication Process in Secure BROMMode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 98

Secure BROM Requirements

The Secure Boot has the following some requirement:

 Supports X509 certificate

The certificate is used to check whether the Security Boot software is modified or replaced.
Before running the Security Boot software, the system checks the integrity of the certificate
make sure the software has not been modified or replaced.

 Supports cryptographic algorithms

- AES-128

- SHA-256

- RSA-2048

- AES, DES

The system uses the Crypto Engine (CE) hardware module to accelerate the speed of
encryption and decryption. The standard cryptography ensures the reliability of the
firmware images. The reliable firmware image ensures that the system security state can be
as expected.

 Support OTP/eFuse

2.4.2.3 Mandatory Upgrade Process

If the FEL pin is detected to pull low, the system will jump to the mandatory upgrade process.
The following figure shows the mandatory upgrade process.

Figure 2-5 Mandatory Upgrade Process

NOTE

The FEL address of the Normal BROM is 0x20.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 99

FEL Process

When the system enters mandatory upgrade process, it will jump to the FEL process.

The following figure shows the FEL upgrade process.

Figure 2-6 USB FEL Process

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 100

2.4.2.4 Fast Boot Process

If the value of the Fast Boot register (0x07090120) in RTCmodule is not zero, the system will enter
the fast boot process. The following table shows the boot medium priority for different values of
the Fast Boot register.

Table 2-9 Fast Boot Select Setting

Reg_bit[31:28] Boot Select type
1 SD Card->MLC NAND -> SLC NAND -> TRY
2 SD Card->EMMC_USER -> EMMC_BOOT -> TRY
3 SD Card->SPI NOR(1 wire)-> SPI NOR(4 wire)-> TRY
4 SD Card->SPI NAND -> TRY
5 SD Card->EMMC_BOOT -> EMMC_USER -> TRY
6 SD Card->SLC NAND -> MLC NAND -> TRY
7 Reserved
8 SD Card->SPI NOR(4 wire)-> SPI NOR(1 wire)-> TRY
10 SD Card->SPI NOR(4 wire) in PJ -> TRY
11 SD Card->SPI NAND in PJ-> TRY

NOTE

 The Fast Boot register bit [27:0] is used record the media information.

 Unused value like 7 regarded as “TRY”.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 101

2.5 Clock Controller Unit (CCU)

2.5.1 Overview

The clock controller unit (CCU) controls the PLL configurations and most of the clock generation,
division, distribution, synchronization, and gating. The input signals of the CCU include the
external clock for the reference frequency (24 MHz). The outputs from the CCU are mostly clocks
to other blocks in the system.

The CCU includes the following features:

 10 PLLs

 Bus source and divisions

 Clock output control

 Configuring modules clock

 Bus clock gating

 Bus software reset

NOTE

 There are 15 PLLs in A523. 10 PLLs in CCU, 4 PLLs in CPUX system, and 1 PLL in MCU_PRCM.

 CCU describes module clocks in CPUX domain excluding the clock of CPUX system.

 For clock description of CPUX system, please refer to section 2.2.3.2 CPU PLL Distribution
and Clock Sources.

 For module clocks in CPUS domain, please refer to section 2.11 Power Reset Clock
Management (PRCM).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 102

2.5.2 Block Diagram

The following figure shows the functional block diagram of the CCU.

Figure 2-7 CCU Block Diagram

2.5.3 Functional Description

2.5.3.1 Typical Application

Figure 2-8 CCU Typical Application Diagram

CCU outputs bus clock, bus reset, function clock, and function reset to each IP module.

It is needed to enable the bus clock gating signal before using the bus clock. For some
subsystems, CCU outputs special bus clock which has been added clock gating. When using the
special bus clock, you also need to enable the bus clock gating signal.

The IP reset is from the synchronous release of the input reset signal. To ensure the implement of
synchronous release in every module, you need to release the reset signal before enbling the
clock gating signal of the function clock.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 103

2.5.3.2 PLL Distribution

The following figure shows the block diagram of the PLL distribution.

Figure 2-9 PLL Distribution

2.5.3.3 PLL Features

The following table shows the PLL features.

Table 2-10 PLL Features

PLL
Stable Operating
Frequency

Actual Operating
Frequency

Spread
Spectrum

Linear
FM

Pk-Pk
Lock
Time

PLL_DDR 1.26 GHz～ 2.52 GHz < 2.5 GHz Yes No < 200ps 500us

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 104

PLL
Stable Operating
Frequency

Actual Operating
Frequency

Spread
Spectrum

Linear
FM

Pk-Pk
Lock
Time

PLL_GPU 1.26 GHz～ 2.52 GHz < 1.5 GHz Yes No < 200ps 500us

PLL_PERI0 1.26 GHz～ 2.52 GHz
2x： 1.2 GHz
3x： 800 MHz
5x： 480 MHz

Yes No < 200ps 500us

PLL_PERI1 1.26 GHz～ 2.52 GHz

2x： 1.248 GHz/1.2
GHz
3x： 832 MHz/800
MHz
5x： 499.2 MHz/480
MHz

Yes No < 200ps 500us

PLL_VE 1.26 GHz～ 2.52 GHz < 1.5 GHz Yes No < 200ps 500us

PLL_AUDIO0 1.26 GHz～ 2.52 GHz
1x： 22.5792 MHz
4x： 22.5792*4 MHz

Yes No < 200ps 500us

PLL_VIDEO 1.26 GHz～ 2.52 GHz
3x:792 MHz
4x:1188 MHz

Yes No < 200ps 500us

2.5.4 Programming Guidelines

NOTE

It is not suggested to enable or disable the PLLs frequently during usage. Because the enabling
and disabling of PLL will cause a mutual interference between PLLs, which will affect system
stability. When the clock is not required, it is recommended to configure the PLL_OUTPUT_GATE
bit of PLL control register as 0 instead of writing 0 to the enable bit.

2.5.4.1 Enabling the PLL

Follow the steps below to enable the PLL:

Step 1 Configure the N, M, and P factors of the PLL control register.

Step 2 Write 1 to the PLL_EN bit (bit [31]) and the PLL_LDO_EN bit (bit [30]) of the PLL control
register, write 0 to the PLL_OUTPUT_GATE bit (bit [27]) of the PLL control register.

Step 3 Write 1 to the LOCK_ENABLE bit (bit [29]) of the PLL control register.

Step 4 Wait for the status of the Lock to change to 1.

Step 5 Delay 20 us.

Step 6 Write the PLL_OUTPUT_GATE bit (bit [27]) of the PLL control register to 1 and then the
PLL will be available.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 105

2.5.4.2 Configuring the Frequency of General PLLs

Step 1 Make sure the PLL is enabled. If not, refer to section 2.5.4.1 Enabling the PLL to enable
the PLL.

Step 2 Configure the PLL_OUTPUT_GATE bit (bit [27]) of the PLL control register as 0 to disable
the output gate of the PLL. Because, general PLLs are unavailable in the process of
frequency modulation.

Step 3 Configure the N and M factors. (It is not suggested to configure M1 factor)

Step 4 Write 0 and then write 1 to the LOCK_ENABLE bit (bit [29]) of the PLL control register.

Step 5 Wait for the LOCK bit (bit [28]) of the PLL control register to 1.

Step 6 Configure PLL_OUTPUT_GATE bit (bit [27]) of the PLL control register to 1.

2.5.4.3 Configuring the Frequency of PLL_AUDIO0

The frequency configuration formula of PLL_AUDIO0:

PLL_AUDIO0 = 24 MHz*N/M0/M1/P

PLL_AUDIO0 does not support dynamic adjustment because changing any parameter of N, M0,
M1, and P will affect the normal work of PLL, and the PLL will need to be relocked.

Generally, PLL_AUDIO0 only needs two frequency points: 24.576*4 MHz or 22.5792*4 MHz. For
these two frequencies, there are usually special recommended matching factors. To implement
the desired frequency point of PLL_AUDIO0, you need to use the decimal frequency-division
function, so follow the steps below:

Step 1 Configure the N, M0, M1 and P factors.

Step 2 Write 1 to the PLL_SDM_EN bit (bit [24]) of PLL_AUDIO0_CTRL register.

Step 3 Configure PLL_AUDIO0_PAT0_CTRL register to enable the digital spread spectrum.

Step 4 Write 0 and then write 1 to the LOCK ENABLE bit (bit [29]) of PLL_AUDIO0_CTRL register.

Step 5 Write 1 to the LOCK bit (bit [28]) of PLL_AUDIO0_CTRL register.

NOTE

 When the P factor of PLL_AUDIO0 is an odd number, the clock output is an
unequal-duty-cycle signal.

 A523 includes PLL_AUDIO0 and PLL_AUDIO1. For detailed description of PLL_AUDIO1,
please refer to section 2.11 Power Reset Clock Management (PRCM).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 106

2.5.4.4 Disabling the PLL

Follow the steps below to disable the PLL:

Step 1 Write 0 to the PLL_EN bit (bit [31]) and the PLL_LDO_EN bit (bit [30]) of the PLL control
register.

Step 2 Write 0 to the LOCK_ENABLE bit (bit [29]) of the PLL control register.

2.5.4.5 Implementing Spread Spectrum

The spread spectrum technology is to convert a narrowband signal into a wideband signal. It
helps to reduce the effect of electromagnetic interference (EMI) associated with the fundamental
frequency of the signal.

For the general PLL frequency, the calculation formula is as follows:

    1024
1110

1





 XMHz,
MMP
XNf

Where,

P is the frequency division factor of module or PLL;

M0 is the post-frequency division factor of PLL;

M1 is the pre-frequency division factor of PLL;

N is the frequency doubling factor of PLL;

X is the amplitude coefficient of the spread spectrum.

The parameters N, P, M1, and M0 are for the frequency division.

When M1 = 0, M0 = 0, and P = 1 (no frequency division), the calculation formula of PLL frequency
can be simplified as follows:

  10241  XMHz, XNf
  MHzXXNff 24] ,[1] ,[2121 

1
172_ XBOTSDM 

    2/MHz 24/2WAVE_STEP 12
17  PREQXX

Where, SDM_BOT and WAVE_STEP are bits of the PLL pattern control register, and PREQ is the
frequency of the spread spectrum.

NOTE

Different PLLs have different calculate formulas, refer to the CTRL register of the corresponding
PLL in section 2.5.6 Register Description.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 107

Follow the steps below to implement the spread spectrum:

Step 1 Configure the control register of the corresponding PLL

a) Calculate the factor N and decimal value X according to the PLL frequency and PLL
frequency formula. Refer to the control register of the corresponding PLL (named
PLL_xxx_CTRL_REG, where xxx is the module name) in 2.5.6 Register Description for
the corresponding PLL frequency formula.

b) Write M0, M1, N, and PLL frequency to the PLL control register.

c) Configure the PLL_SDM_EN bit (bit [24]) of the PLL control register to 1 to enable
the spread spectrum function.

Step 2 Configure the pattern control register of the corresponding PLL

a) Calculate the SDM_BOT and WAVE_STEP of the pattern control register according
to decimal value X and spread spectrum frequency (the bit [18:17] of the PLL
pattern register)

b) Configure the spread spectrum mode (SPR_FREQ_MODE) to 2 or 3.

c) If the PLL_INPUT_DIV2 of the PLL control register is 1, configure the spread
spectrum clock source select bit (SDM_CLK_SEL) of the PLL pattern control register
to 1. Otherwise, configure SDM_CLK_SEL to the default value 0.

d) Write SDM_BOT, WAVE_STEP, PREQ, SPR_FREQ_MODE, and SDM_CLK_SEL to the
PLL pattern control register, and configure the SIG_DELT_PAT_EN bit (bit [31]) of
this register to 1.

Step 3 Delay 20 us

2.5.4.6 Configuring Bus Clock

The bus clock supports dynamic switching, but the process of switching needs to follow the
following two rules.

 From a higher frequency to a lower frequency: switch the clock source first, and then set the
frequency division factor;

 From a lower frequency to a higher frequency: configure the frequency division factor first,
and then switch the clock source.

The bus frequency for each bus is as follows:

 AXI: It is suggested to be configured as the CPU clock frequency divided by 3. when the CPU
clock frequency is less than 1.2 GHz, AXI frequency could be configured as the CPU clock
frequency divided by 2.

 AHB: Maximum 200 MHz

 APB0: Maximum 100 MHz

 APB1: Maximum 160 MHz

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 108

 MBUS: Maximum 700 MHz

 IOMMU: Maximum 600 MHz

2.5.4.7 Configuring Module Clock

For the Bus Gating Reset register of a module, the reset bit is de-asserted first, and then the clock
gating bit is enabled to avoid potential problems caused by the asynchronous release of the
reset signal.

For all module clocks except the DDR clock, configure the clock source and frequency division
factor first, and then release the clock gating (that is, set to 1). For the configuration order of the
clock source and frequency division factor, follow the rules below:

 With the increasing of the clock source frequency, configure the frequency division factor
before the clock source;

 With the decreasing of the clock source frequency, configure the clock source before the
frequency division factor.

2.5.5 Register List

NOTE

 Before switching the glitch-free MUX, ensure that

- Every clock source is in use.

- The switching time is longer than two clock periods of the slowest clock source.

 Before switching the normal MUX, ensure that the clock sources are closed.

Module Name Base Address
CCU 0x0200 1000

Register Name Offset Description
PLL_DDR_CTRL_REG 0x0010 PLL_DDR Control Register
PLL_PERI0_CTRL_REG 0x0020 PLL_PERI0 Control Register
PLL_PERI1_CTRL_REG 0x0028 PLL_PERI1 Control Register
PLL_GPU_CTRL_REG 0x0030 PLL_GPU Control Register
PLL_VIDEO0_CTRL_REG 0x0040 PLL_VIDEO0 Control Register
PLL_VIDEO1_CTRL_REG 0x0048 PLL_VIDEO1 Control Register
PLL_VIDEO2_CTRL_REG 0x0050 PLL_VIDEO2 Control Register
PLL_VE_CTRL_REG 0x0058 PLL_VE Control Register
PLL_VIDEO3_CTRL_REG 0x0068 PLL_VIDEO3 Control Register
PLL_AUDIO0_CTRL_REG 0x0078 PLL_AUDIO0 Control Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 210

2.6 DMA Controller (DMAC)

2.6.1 Overview

The direct memory access (DMA) is a method of transferring data between peripherals and
memories (including the SRAM and DRAM) without using the CPU. It is an efficient way to offload
data transfer duties from the CPU. Without DMA, the CPU has to control all the data transfers.
While with DMA, the DMAC directly transfers data between a peripheral and a memory, between
peripherals, or between memories.

The DMAC has the following features:

 Up to 16-ch DMA in CPUX domain and 16-ch DMA in CPUS domain

 Provides 53 peripheral DMA requests for data reading and 53 peripheral DMA requests for
data writing

 Transferring data with linked list

 Flexible data width: 8 bits, 16 bits, or, 32 bits

 Programmable DMA burst length

 DRQ response includes waiting mode and handshake mode

 Supports non-aligned transform for memory devices

 DMA channels that support the following：

- Pausing DMA

- BMODE and I/O speed mode

- DMA timeout

NOTE

The following description focuses on the DMA of the CPUX domain.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 211

2.6.2 Block Diagram

The following figure shows a block diagram of DMAC.

Figure 2-10 DMAC Block Diagram

DMAC contains the following sub-blocks:

Table 2-11 DMAC Sub-blocks

Sub-block Description

DMA_ARBITER
Arbitrates the DMA read/write requests from all channels, and converts the
requests to the read/write requests of ports.

DMA_CHANNELs

DMA transfer engine. Each channel is independent. When the DMA requests
from multiple peripherals are valid simultaneously, the channel with the
highest priority starts data transfer first. The system uses the polling
mechanism to decide the priorities of DMA channels. When DMA_ARBITER
is idle, channel 0 has the highest priority, whereas channel 15 has the
lowest priority. When DMA_ARBITER is busy processing the request from
channel n, channel (n+1) has the highest priority. For n = 15, the channel (n
+ 1) should be channel 0.

DRQs
DMA requests. Peripherals use the DMA request signals to request a data
transfer.

DMA_MPORT
Receives the read/write requests from DMA_ARBITER, and converts the
requests to the corresponding MBUS access requests. It is mainly used for
accessing the DRAM.

DMA_HPORT
The port for accessing the AHB Master. It is mainly used for accessing the
SRAM and IO devices.

DMA_FIFO CTRL Internal FIFO cell control module.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 212

Sub-block Description
DMA_REG
Interface

DMA_REG is the common register module that is mainly used to resolve
AHB commands.

DMA_CLKGATE The control module for hardware auto clock gating.

The DMAC integrates 16 independent DMA channels and each channel has an independent FIFO
controller. When the DMA channel starts, the DMAC gets a DMA descriptor from the
DMA_DESC_ADDR_REG and uses it as the configuration information for the data transfer of the
current DMA package. Then the DMAC can transfer data between the specified devices. After
transferring a DMA package, the DMAC judges if the current channel transfer is finished via the
linked address in the descriptor. If the linked address shows all the packages are transferred, the
DMAC will end the chain transmission and close the channel.

2.6.3 Functional Description

2.6.3.1 Clock

The DMAC is on AHB or MBUS. The clocks of AHB and MBUS influence the transfer efficiency of
the DMAC.

2.6.3.2 Typical Application

The following figure shows a typical application of the DMAC.

Figure 2-11 DMAC Typical Application Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 213

2.6.3.3 DRQ Port of Peripherals

The following tables show the source DRQ types and destination DRQ types of different ports.

Table 2-12 DMA DRQ Type

Source DRQ Type Destination DRQ Type
port0 SRAM port0 SRAM
port1 DRAM port1 DRAM
port2 port2
port3 port3
port4 port4
port5 port5
port6 port6
port7 port7
port8 port8
port9 port9
port10 NDFC port10 NDFC
port11 port11
port12 GPADC Port12
port13 port13 CIR_TX
port14 UART0_RX port14 UART0_TX
port15 UART1_RX port15 UART1_TX
port16 UART2_RX port16 UART2_TX
port17 UART3_RX port17 UART3_TX
port18 UART4_RX port18 UART4_TX
port19 UART5_RX port19 UART5_TX
port20 UART6_RX Port20 UART6_TX
port21 UART7_RX port21 UART7_TX
port22 SPI0_RX port22 SPI0_TX
port23 SPI1_RX port23 SPI1_TX
port24 SPI2_RX port24 SPI2_TX
port25 port25
port26 port26
port27 port27
port28 port28
port29 port29
Port30 USB0_EP1 Port30 USB0_EP1
Port31 USB0_EP2 Port31 USB0_EP2
Port32 USB0_EP3 Port32 USB0_EP3
Port33 USB0_EP4 Port33 USB0_EP4
Port34 USB0_EP5 Port34 USB0_EP5
Port35 Port35
Port36 Port36

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 214

Source DRQ Type Destination DRQ Type
Port37 Port37
Port38 Port38
Port39 Port39
Port40 Port40
Port41 Port41
Port42 Port42 LEDC
Port43 TWI0 Port43 TWI0
Port44 TWI1 Port44 TWI1
Port45 TWI2 Port45 TWI2
Port46 TWI3 Port46 TWI3
Port47 TWI4 Port47 TWI4
Port48 TWI5 Port48 TWI5
Port49 S_TWI0 Port49 S_TWI0
Port50 S_TWI1 Port50 S_TWI1
Port51 S_UART0 Port51 S_UART0
Port52 S_UART1 Port52 S_UART1
Port53 S_SPI0 Port53 S_SPI0

Table 2-13 DMA DRQ Type of MCU_DMAC

Source DRQ Type Destination DRQ Type
port0 SRAM port0 SRAM
port1 DRAM port1 DRAM
port2 OWA port2 OWA
port3 I2S0_RX port3 I2S0_TX
port4 I2S1_RX port4 I2S1_TX
port5 I2S2_RX port5 I2S2_TX
port6 I2S3_RX port6 I2S3_TX
port7 AUDIO_CODEC port7 AUDIO_CODEC
port8 DMIC port8
port9 S_TWI0 port9 S_TWI0
port10 S_TWI1 port10 S_TWI1
port11 S_UART0 port11 S_UART0
port12 S_UART1 port12 S_UART1
Port13 S_SPI0 Port13 S_SPI0
Port14 S_TWI2 Port14 S_TWI2

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 215

2.6.3.4 DMA Descriptor

The DMAC descriptor is the configuration information of DMA transfer that decides the DMA
working mode. Each descriptor includes 6 words: Configuration, Source Address, Destination
Address, Byte Counter, Parameter, and Link. The following figure shows the structure of the DMA
descriptor.

Figure 2-12 DMA Descriptor

 Configuration: Configure the following information.

- DRQ type: DRQ type of the source and destination devices.

- Address counting mode: For both the source and destination devices, there are two
address counting modes: the IO mode and linear mode. The IO mode is for IO devices
whose address is fixed during the data transfer and the linear mode is for the memory
whose address is increasing during the data transfer.

- Transferred block length: How many times can non-memory peripherals transfer in a
valid DRQ. The block length supports 1 time, 4 times, 8 times, and 16 times.

- Transferred data width: The data width of operating the non-memory peripherals. The
data width supports 8 bits, 16 bits, and 32 bits.

NOTE

The configuration supports BMODE mode. The BMODE is used in the following scenario:
the source is an IO device, and the destination is a memory device. Setting the BMODE
mode can limit the amount of block data transferred in DMA block transmission to the
amount of data transferred when the DRQ threshold of the source IO device is 1.

 Source Address: Configure the address of the source device.

 Destination Address: Configure the address of the destination device.

DMA reads data from the source address and then writes data to the destination address.

Both the DMA source and destination addresses have 34 bits. In the descriptor, because
there are only 32 bits in the Source/Destination Address field, another 2 bits are stored in the
Parameter field.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 216

The following table shows the details of the related fields in the descriptor.

Table 2-14 Source/Destination Address Distribution

Descriptor
Group

Bit Description

Source
Address

31:0 DMA transfers the lower 32 bits of the 34-bit source address

Destination
Address

31:0 DMA transfers the lower 32 bits of the 34-bit destination address

Parameter

31
TIMEOUT Enable
TIMEOUT only can be enabled in BMODE and IOspeed should be
disabled when using this function.

30:29

TIMEOUT Configuration
00: Not use sub-functions
01: Generate an interrupt and suspend the transmission after
timeout.
10: Generate an interrupt and end the transmission after timeout.
11: Generate an interrupt and skip to the next descriptor after
timeout.

28:20
TIMEOUT Configuration
Timer time of channels.

19:18 DMA transfers the higher 2 bits of the 34-bit destination address
17:16 DMA transfers the high 2 bits of the 34-bit source address
15:9 Reserved

8

I/O Speed Mode Enable
If this bit is enabled, DMA will transmit the data of the I/O device from
the source device or the destination device, or both of them at a
faster speed.
Note: IOspeed and BMODE cannot be enabled at the same time.

7:0
Wait Clock Cycles
Set the waiting time in DRQmode

Link
31:2

The address of the next group descriptor, the lower 30 bits of the
word address

1:0
The address of the next group descriptor, the higher 2 bits of the word
address

From the above table, you can get:

Real DMA source address (in byte mode) = {Parameter [17:16], Source Address [31:0]};

Real DMA destination address (in byte mode) = {Parameter [19:18], Destination Address
[31:0]};

Real link address (in byte mode) = {Link [1:0], Link [31:2], 2’b00}.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 217

 Byte counter: Configure the data amount of a package. The maximum value is (2^25-1) bytes.
If the data amount of the package reaches the maximum value, even if DRQ is valid, the DMA
will stop the current transfer.

 Parameter: Configure the interval between the data block. The parameter is valid for
non-memory peripherals. When DMA detects that the DRQ is high, the DMA transfers the
data block and ignores the status changes of the DRQ until the data transfer finishes. After
that, the DMA waits for certain clock cycles (WAIT_CYC) and executes the next DRQ detection.
In addition, the Parameter is responsible for enabling and configuring TIMEOUT. In the case
that the source device is an I/O device and the destination device is a memory device, the
waiting time of a DRQ signal triggered by the source device can be set when TIMEOUT is
enabled. When time is out, an interrupt signal of TIMEOUT will be generated by DMA. There
are three sub-functions of TIMEOUT to be enabled (TIMEOUT will only generate interrupts if
they are disabled): suspend the transmission of the current channel after an interrupt is
generated; end the transmission of the current channel after an interrupt is generated; skip
to the next descriptor for transmission after an interrupt is generated. (TIMEOUT only can be
enabled in BMODE.)

The Parameter also configures whether the IOspeed is enabled or not. If IOspeed is enabled,
DMA will transmit the data of the I/O device from the source device or the destination device,
or both of them at a faster speed. The larger block indicates a faster speed. However, when
the block is 1, the speed won’t change a lot even if the IO speed is enabled.

 Link: If the value of the link is 0xFFFFF800, the current package is at the end of the linked list.
The DMAC will stop the data transfer after transferring the package; otherwise, the value of
the link is considered as the descriptor address of the next package.

Figure 2-13 DMA Chain Transfer

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 218

2.6.3.5 Interrupts

There are four kinds of DMA interrupts: the half package interrupt, package end interrupt, and
queue end interrupt.

 Half package interrupt

When enabled, the DMAC sends out a half package interrupt after transferring half of a package.

 Package end interrupt

When enabled, the DMAC sends out a package end interrupt after transferring a complete
package.

 Queue end interrupt

When enabled, the DMAC sends out a queue end interrupt after transferring a complete queue.

 Timeout interrupt

When TIMEOUT is enabled, DMA will generate a timeout interrupt after timeout.

Notice that when CPU does not respond to the interrupts timely, or two DMA interrupts are
generated very closely, the later interrupt may override the former one. That is, from the
perspective of the CPU, the DMAC has only a system interrupt source.

2.6.3.6 Clock Gating

The DMA_CLK_GATE module is a hardware module for controlling the clock gating automatically.
It provides clock sources for sub-modules in DMAC and the module local circuits.

The DMA_CLK_GATE module consists of two parts: the channel clock gate and the common clock
gate.

Channel clock gate: Controls the DMA clock of the DMA channels. When the system accesses the
register of the current DMA channel and the DMA channel is enabled, the channel clock gate
automatically opens the DMA clock. With a 16-HCLK-cycle delay after the system finishes
accessing the register or the DMA data transfer is completed, the channel clock gate
automatically closes the DMA clock. Also, the clock for the related circuits, such as for the
channel control and FIFO control modules, will be closed.

Common clock gate: Controls the clocks of the DMA common circuits. The common circuits
include the common circuit of the FIFO control module, MPORT module, and MBUS. When all the
DMA channels are disabled, the common clock gate automatically closes the clocks for the above
circuits.

The DMA clock gating can support all the functions stated above or not by software.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 219

2.6.3.7 Transfer Mode

The peripherals initiate data transfer by transmitting DMA request signals to the DMAC. After
receiving the request signal, the DMAC converts it to the internal DRQ signal and controls the
DMA data transfer.

The DMAC supports two data transfer modes: the waiting mode and handshake mode.

The principle of waiting mode

 When the DMAC detects a valid external request signal, the DMAC starts to operate the
peripheral device. The internal DRQ always holds high before the transferred data amount
reaches the transferred block length.

 When the transferred data amount reaches the transferred block length, the internal DRQ
pulls low automatically.

 The internal DRQ holds low for certain clock cycles (WAIT_CYC), and then the DMAC restarts
to detect the external requests. If the external request signal is valid, then the next transfer
starts.

The principle of handshake mode

 When the DMAC detects a valid external request signal, the DMAC starts to operate the
peripheral device. The internal DRQ always holds high before the transferred data amount
reaches the transferred block length.

 When the transferred data amount reaches the transferred block length, the internal DRQ
will be pulled down automatically. For the last data transfer of the block, the DMAC sends a
DMA Last signal with the DMA commands to the peripheral device. The DMA Last signal will
be packed as part of the DMA commands and transmitted on the bus. It is used to inform the
peripheral device that it is the end of the data transfer for the current DRQ.

 When the peripheral device receives the DMA Last signal, it can judge that the data transfer
for the current DRQ is finished. To continue the data transfer, it sends a DMA Active signal to
the DMAC.

NOTE

One DMA Active signal will be converted to one DRQ signal in the DMA module. To generate
multiple DRQs, the peripheral device needs to send out multiple DMA Active signals via the bus
protocol.

 When the DMAC received the DMA Active signal, it sends back a DMA ACK signal to the
peripheral device.

 When the peripheral device receives the DMA ACK signal, it waits for all the operations on the
local device completed, and both the FIFO and DRQ status refreshed. Then it invalidates the
DMA Active signal.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 220

 When the DMAC detects the falling edge of the DMA Active signal, it invalidates the
corresponding DMA ACK signal, and restarts to detect the external request signals. If a valid
request signal is detected, the next data transfer starts.

The following figure shows the workflow of the handshake mode.

Figure 2-14 Workflow of the DMACHandshake Mode

2.6.3.8 Address Auto-Alignment

For the non-IO devices whose start address is not 32-byte-aligned, the DMAC will adjust the
address to 32-byte-aligned through the burst transfer within 32 bytes. Adjusting address to
32-byte-aligned improves the DRAM access efficiency.

The following example shows how the DMAC adjusts the address: when the peripheral device of
a DMA channel is a non-IO device whose start address is 0x86 (not 32-byte-aligned), the DMAC
firstly uses a 26-byte burst transfer to align the address to 0xA0 (32-byte-aligned), and then
transfers data by 64-byte burst (the maximum transfer amount that MBUS allows).

The IO devices do not support address alignment, so the bit width of IO devices must match the
address offset; otherwise, the DMAC will ignore the inconsistency and directly transmit data of
the corresponding bit width to the address.

The address of the DMA descriptor does not support the address auto-alignment. Make sure the
address is word-aligned; otherwise the DMAC cannot identify the descriptor.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 221

2.6.3.9 DMAC Clock Control

 The DMAC clock is synchronous with the AHB clock. Make sure that the DMAC gating bit of
AHB clock is enabled before accessing the DMAC register.

 The reset input signal of the DMAC is asynchronous with AHB and is low valid by default.
Make sure that the reset signal of the DMAC is de-asserted before accessing the DMA register.

 To avoid the indefinite state within registers, de-assert the reset signal first, and then open
the gating bit of AHB.

 The DMAC supports Clock Auto Gating function to reduce power consumption, the system
will automatically disable the DMAC clock in the DMAC idle state. Clock Auto Gating is
enabled by default.

2.6.4 Programming Guidelines

2.6.4.1 Using DMAC Transfer Process

The DMAC transfer process is as follows.

Step 1 Configure DMAC_IRQ_CPU_EN_REG register and DMAC_IRQ_MCU_EN_REG register to
select whether the channel interrupt siganl is transferred to CPU field or MCU field. If
both of the two registers are not configured, the IRQ will be transferred to both CPU field
and MCU field by default.

Step 2 Request DMA channel, and check if the DMA channel is idle by checking if it is enabled. A
disabled channel indicates it is idle, while an enabled channel indicates it is busy.

Step 3 Write the descriptor with 6 words into the memory. The descriptor must be
word-aligned. For more details, refer to section 2.6.3.4 DMA Descriptor.

Step 4 Write the start address of the descriptor to DMAC_DESC_ADDR_REG.

Step 5 Enable the DMA channel, and write the corresponding channel to DMAC_EN_REG.

Step 6 The DMA obtains the descriptor information.

Step 7 Start to transmit a package. When half of the package is completed, the DMA sends a
Half Package Transfer Interrupt; when a total package is completed, the DMA sends a
Package End Transfer Interrupt. This interrupt status can be read by
DMAC_IRQ_PEND_REG0.

Step 8 Set DMAC_PAU_REG to pause or resume the data transfer.

Step 9 After completing a total package transfer, the DMA decides to start the next package
transfer or end the transfer by the link of the descriptor. If the link is 0xFFFFF800, the
transfer ends; otherwise, the next package starts to transmit. When the transfer ends,
the DMA sends a Queue End Transfer Interrupt.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 222

Step 10 Disable the DMA channel.

Figure 2-15 DMAC Transfer Process

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 223

2.6.4.2 Processing DMAC Interrupt

Follow the steps below to process the DMAC interrupt:

Step 1 Enable interrupt: write the corresponding interrupt enable bit of DMAC_IRQ_EN_REG0.
The system generates an interrupt when the corresponding condition is satisfied.

Step 2 After entering the interrupt process, write to clear the interrupt pending and execute the
process of waiting for the interrupt.

Step 3 Resume the interrupt and continue to execute the interrupted process.

2.6.4.3 Configuring DMAC

To configure the DMAC, follow the guidelines below:

 Make sure the transfer bit width of IO devices is consistent with the offset of the start
address.

 The MBUS protocol does not support the read operation of non-integer words. For the
devices whose bit width is not word-aligned, after receiving the read command, they should
resolve the read command according to their FIFO bit width instead of the command bit
width, and ignore the redundant data caused by the inconsistency of the bit width.

 When the DMA transfer is paused, this is equivalent to invalid DRQ. Because there is a certain
time delay between DMA transfer commands, the DMAC will not stop data transfer until the
DMAC finishes processing the current command and the commands in Arbiter (at most 128
bytes’ data).

 IOspeed and BMODE cannot be enabled at the same time.

 As DMA will transmit interrupts to DMAC_IRQ_CPU_EN_REG and DMAC_IRQ_MCU_EN_REG
by default simultaneously, it should be configured which one receives interrupts before
transmission, and the other one ought to be disabled.

 Timeout Programming Instruction

- Similar to the register configuration of other channels, configure by descriptors and
read through registers.

- Enable BMODE before using TIMEOUT functions.

- Before enabling TIMEOUT functions, if the source device configures the descriptor
Config [7:6] as 0, set the DMAC_MODE_REG [4] as 1, and then start the DMA transfer.

- After enabling the pause function of TIMEOUT, resume the data transfer by configuring
the DMAC_PAU_REG.

- After enabling the stop function of TIMEOUT, when TIMEOUT generates an interrupt,
DMA will not generate the interrupt end signal of package and write-back. To restart the
channel, configure the descriptors again.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 224

- After enabling the jump function of TIMEOUT, when TIMEOUT generates an interrupt,
DMA will not generate the interrupt end signal of package and write-back but skip to the
next descriptor. Whether to start the TIMEOUT functions is decided by the descriptor
being executed at that time. If there is no descriptor, transmission ends.

- The entered count number= the time to be counted * clock frequency (DMA clock
frequency)/4096

- Take an example of 200MHz clock frequency for DMA. If the step size of timer is 20.48 us,
and the maximum count is 511, the longest counting time will be the maximum
count*step size=10.46 ms, and the shortest counting time will be 1*step size=20.48 us.

DMAC application example:

writel(0x00000000, mem_address + 0x00); //Set configurations. The mem_address must be
word-aligned.

writel (0x00001000, mem_address + 0x04); // Set the start address for the source device.

writel (0x20000000, mem_address + 0x08); //Set the start address for the destination device.

writel (0x00000020, mem_address + 0x0C); // Set the data package size.

writel (0x00000000, mem_address + 0x10); //Set the parameters.

writel (0xFFFFF800, mem_address + 0x14); //Set the start address for the next descriptor.

writel (mem_address, 0x03002000+ 0x100 + 0x08); //Set the start address for the DMA channel0
descriptor.

do {

If (mem_address == readl (0x03002000+ 0x100 + 0x08));

break;

} while (1); //Make sure that the writing operation is valid.

writel (0x000000001, 0x03002000+ 0x100 + 0x00); // Enable DMA channel0 transfer.

The DMAC supports increasing data package in transfer, pay attention to the following points:

 The 0xFFFFF800 value of DMAC_FDESC_ADDR_REG indicates that the DMA channel has got
back the descriptor of the last package. The DMA channel will automatically stop the data
transfer after transferring the current package.

 To add a package during the data transfer, check if the DMA channel has got back the
descriptor of the last package. If yes, you cannot add any package in the current queue.
Request another DMA channel with a new DRQ to transfer the package. Otherwise, you can
add the package by modifying the DMAC_FDESC_ADDR_REG of the last package from
0xFFFFF800 to the start address of the to-be-added package.

To ensure that the modification is valid, read the value of DMAC_FDESC_ADDR_REG after the
modification. The value 0xFFFFF800 indicates the modification fails and the other values
indicate you have successfully added packages to the queue.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 225

Another problem is, the system needs some time to process the modification, during which
the DMA channel may get back the descriptor of the last package. You can read
DMAC_CUR_SRC_REG and DMAC_CUR_DEST_REG and check if the increasing memory
address accords with the information of the added package. If yes, the package is added
successfully; otherwise, the modification failed.

To ensure a higher rate of success, it is suggested that you add the package before the half
package interrupt of the penultimate package.

2.6.5 Register List

Module Name Base Address Comments
DMAC 0x0300 2000
MCU_DMAC 0x0712 1000 MCU_DMAC register is the same with DMAC

Register Name Offset Description
DMAC_IRQ_EN_REG0 0x0000 DMAC IRQ Enable Register 0
DMAC_IRQ_EN_REG1 0x0004 DMAC IRQ Enable Register 1
DMAC_IRQ_PEND_REG0 0x0010 DMAC IRQ Pending Status Register 0
DMAC_IRQ_PEND_REG1 0x0014 DMAC IRQ Pending Status Register 1
DMAC_SEC_REG 0x0020 DMAC Security Register
DMAC_AUTO_GATE_REG 0x0028 DMAC Auto Gating Register
DMAC_STA_REG 0x0030 DMAC Status Register

DMAC_IRQ_CPU_EN_REG 0x0034
DMAC IRQ Transfer to CPU Field Enable
Register

DMAC_IRQ_MCU_EN_REG 0x0038
DMAC IRQ Transfer to MCU Field Enable
Register

DMAC_EN_REG
0x0100+N*0x0040
(N=0-15)

DMAC Channel Enable Register

DMAC_PAU_REG
0x0104+N*0x0040
(N=0-15)

DMAC Channel Pause Register

DMAC_DESC_ADDR_REG
0x0108+N*0x0040
(N=0-15)

DMAC Channel Descriptor Address
Register

DMAC_CFG_REG
0x010C+N*0x0040
(N=0-15)

DMAC Channel Configuration Register

DMAC_CUR_SRC_REG
0x0110+N*0x0040
(N=0-15)

DMAC Channel Current Source Address
Register

DMAC_CUR_DEST_REG
0x0114+N*0x0040
(N=0-15)

DMAC Channel Current Destination
Address Register

DMAC_BCNT_LEFT_REG
0x0118+N*0x0040
(N=0-15)

DMAC Channel Byte Counter Left
Register

DMAC_PARA_REG
0x011C+N*0x0040
(N=0-15)

DMAC Channel Parameter Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 254

2.7 Generic Interrupt Controller (GIC)

2.7.1 Overview

The GIC-600 is a generic interrupt controller that handles interrupts from peripherals to the cores
and interrupts between cores. The GIC-600 supports a distributed microarchitecture containing
several individual blocks that are used to provide a flexible GIC implementation.

All the GIC-600 blocks communicate through fully credited AXI4-Stream interface channels. This
means that the interface exerts transient backpressure only on their ic<xy>tready signals,
enabling packets to be routed over any free-flowing interconnect. Channels can be routed over
dedicated AXI4-Stream buses, or over any available free-flowing transport layer in the system. A
channel is described as free-flowing if all transactions on that channel complete without a
non-transient dependency on any other transaction.

The GIC-600 includes build scripts that can create appropriate levels of hierarchy for any
particular configuration. In small configurations, the distribution can be hidden and internally
optimized.

the GIC has the following features:

 Interrupt services andmasking:

- Supports the following interrupt types:

 Up to 56000 LPIs. A peripheral generates these interrupts by writing to a
memory-mapped register in the GIC-600.

 Up to 960 SPIs in groups of 32.

 Up to 16 PPIs that are independent for each core and can be programmed to
support either edge triggered or level-sensitive interrupts.

 Up to 16 SGIs that are generated through the GIC CPU interface of a core.

- Up to 16 ITS modules that provide device isolation and ID translation for message-based
interrupts and enable virtual machines to program devices directly.

- Interrupt masking and prioritization with 32 priority levels, five bits per interrupt.

 Registers and programming

- Flexible affinity routing, using the Multiprocessor Identification Register (MPIDR)
addresses, including support for all four affinity levels.

- Single ACE-Lite slave port on each chip for programming of all GIC Distributor (GICD)
registers, GIC Interrupt Translation Service (GITS) registers, and GIC Redistributor (GICR)
registers. Each ITS has an optional ACE-Lite slave port for programming the
GITS_TRANSLATER register.

- Coherent view of SPI register data across multiple chips.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 255

 Security

- A global Disable Security (DS) bit. This bit enables support for systems without security.

- The following interrupt groups allow interrupts to target different exception levels:

 Group 0.

 Non-secure Group 1.

 Secure Group 1.

 Performance Monitoring Unit (PMU) counters with snapshot functionality.

 Error correction: ARMv8.2 Reliability Accessibility Serviceability (RAS) architecture-compliant
error reporting for the following:

- Software access errors

- ITS command and translation errors

- Error Correcting Code (ECC) errors

2.7.2 Functional Description

the following table describes the details of interrupt sources:

Table 2-15 Interrupt Source in CPUX Domain

Interrupt Number Interrupt Source Interrupt Vector Description
0 SGI 0 0x0000 SGI 0 interrupt
1 SGI 1 0x0004 SGI 1 interrupt
2 SGI 2 0x0008 SGI 2 interrupt
3 SGI 3 0x000C SGI 3 interrupt
4 SGI 4 0x0010 SGI 4 interrupt
5 SGI 5 0x0014 SGI 5 interrupt
6 SGI 6 0x0018 SGI 6 interrupt
7 SGI 7 0x001C SGI 7 interrupt
8 SGI 8 0x0020 SGI 8 interrupt
9 SGI 9 0x0024 SGI 9 interrupt
10 SGI 10 0x0028 SGI 10 interrupt
11 SGI 11 0x002C SGI 11 interrupt
12 SGI 12 0x0030 SGI 12 interrupt
13 SGI 13 0x0034 SGI 13 interrupt
14 SGI 14 0x0038 SGI 14 interrupt
15 SGI 15 0x003C SGI 15 interrupt
16 PPI 0 0x0040 PPI 0 interrupt
17 PPI 1 0x0044 PPI 1 interrupt
18 PPI 2 0x0048 PPI 2 interrupt
19 PPI 3 0x004C PPI 3 interrupt
20 PPI 4 0x0050 PPI 4 interrupt

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 256

Interrupt Number Interrupt Source Interrupt Vector Description
21 PPI 5 0x0054 PPI 5 interrupt
22 PPI 6 0x0058 PPI 6 interrupt
23 PPI 7 0x005C PPI 7 interrupt
24 PPI 8 0x0060 PPI 8 interrupt
25 PPI 9 0x0064 PPI 9 interrupt
26 PPI 10 0x0068 PPI 10 interrupt
27 PPI 11 0x006C PPI 11 interrupt
28 PPI 12 0x0070 PPI 12 interrupt
29 PPI 13 0x0074 PPI 13 interrupt
30 PPI 14 0x0078 PPI 14 interrupt
31 PPI 15 0x007C PPI 15 interrupt

32 CPUX_MSGBOX_R 0x0080
CPUX MSGBOX read IRQ for
CPUX

33
CPUS
_MSGBOX_W

0x0084
CPUS MSGBOX write IRQ
for CPUX

34 UART0 0x0088
35 UART1 0x008C
36 UART2 0x0090
37 UART3 0x0094
38 UART4 0x0098
39 UART5 0x009C
40 UART6 0x00A0
41 UART7 0x00A4
42 TWI0 0x00A8
43 TWI1 0x00AC
44 TWI2 0x00B0
45 TWI3 0x00B4
46 TWI4 0x00B8
47 TWI5 0x00BC
48 SPI0 0x00C0
49 SPI1 0x00C4
50 SPI2 0x00C8
51 PWMCTRL0 0x00CC
52 SPIFC 0x00D0
53 0x00D4
54 0x00D8
55 0x00DC
56 0x00E0
57 0x00E4
58 CIR_TX 0x00E8
59 CIR_RX 0x00EC
60 LEDC 0x00F0

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 257

Interrupt Number Interrupt Source Interrupt Vector Description
61 USB0_DEVICE 0x00F4
62 USB0_EHCI 0x00F8
63 USB0_OHCI 0x00FC
64 USB1_EHCI 0x0100
65 USB1_OHCI 0x0104
66 0x0108
67 USB2/USB3 0x010C
68 0x0110
69 0x0114
70 NDFC 0x0118
71 THS0 0x011C
72 SMHC0 0x0120
73 SMHC1 0x0124
74 SMHC2 0x0128
75 NSI 0x012C
76 SMC 0x0130
77 0x0134
78 GMAC 0x0138
79 0x013C
80 CCU_FERR 0x0140

81
AHB_HREADY_TI
ME_OUT

0x0144

82 DMAC_CPUX_NS 0x0148
DMAC channel 0-15
non-secure interrupt

83 DMAC_ CPUX_S 0x014C
DMAC channel 0-15 secure
interrupt

84 CE_NS 0x0150
85 CE_S 0x0154
86 SPINLOCK 0x0158
87 CPUX_TIMER0 0x015C
88 CPUX_TIMER1 0x0160
89 CPUX_TIMER2 0x0164
90 CPUX_TIMER3 0x0168
91 CPUX_TIMER4 0x016C
92 CPUX_TIMER5 0x0170
93 GPADC 0x0174
94 THS1 0x0178
95 CPUX_WDT 0x017C
96 0x0180
97 IOMMU 0x0184
98 LRADC 0x0188

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 258

Interrupt Number Interrupt Source Interrupt Vector Description
99 GPIOA_NS 0x018C
100 GPIOA_S 0x0190
101 GPIOB_NS 0x0194
102 GPIOB_S 0x0198
103 GPIOC_NS 0x019C
104 GPIOC_S 0x01A0
105 GPIOD_NS 0x01A4
106 GPIOD_S 0x01A8
107 GPIOE_NS 0x01AC
108 GPIOE_S 0x01B0
109 GPIOF_NS 0x01B4
110 GPIOF_S 0x01B8
111 GPIOG_NS 0x01BC
112 GPIOG_S 0x01C0
113 GPIOH_NS 0x01C4
114 GPIOH_S 0x01C8
115 0x01CC
116 0x01D0
117 0x01D4
118 0x01D8
119 DE 0x01DC
120 DI 0x01E0
121 0x01E4
122 TCON_LCD0 0x01E8
123 0x01EC
124 TCON_LCD1 0x01F0
125 0x01F4
126 DSI0 0x01F8
127 DSI1 0x01FC
128 TCON_TV1 0x0200
129 0x0204
130 PCIE_EDMA[0] 0x0208
131 PCIE_EDMA[1] 0x020C
132 PCIE_EDMA[2] 0x0210
133 PCIE_EDMA[0] 0x0214
134 PCIE_EDMA[4] 0x0218
135 PCIE_EDMA[5] 0x021C
136 PCIE_EDMA[6] 0x0220
137 PCIE_EDMA[7] 0x0224
138 PCIE_SII 0x0228
139 PCIE_MSI 0x022C

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 259

Interrupt Number Interrupt Source Interrupt Vector Description
140 PCIE_EDMA[8] 0x0230
141 PCIE_EDMA[9] 0x0234
142 PCIE_EDMA[10] 0x0238
143 PCIE_EDMA[11] 0x023C
144 PCIE_EDMA[12] 0x0240
145 PCIE_EDMA[13] 0x0244
146 PCIE_EDMA[14] 0x0248
147 PCIE_EDMA[15] 0x024C
148 GPU_EVENT 0x0250
149 GPU_JOB 0x0254
150 GPU_MMU 0x0258
151 GPU 0x025C
152 VE3 0x0260
153 MEMC_DFS 0x0264
154 CSI_DMA0 0x0268
155 CSI_DMA1 0x026C
156 CSI_DMA2 0x0270
157 CSI_DMA3 0x0274
158 CSI_VIPP0 0x0278
159 CSI_VIPP1 0x027C
160 CSI_VIPP2 0x0280
161 CSI_VIPP3 0x0284
162 CSI_PARSER0 0x0288
163 CSI_PARSER1 0x028C
164 CSI_PARSER2 0x0290
165 CSI_ISP0 0x0294
166 CSI_ISP1 0x0298
167 CSI_ISP2 0x029C
168 CSI_ISP3 0x02A0
169 CSI_CMB 0x02A4
170 CSI_TDM 0x02A8
171 CSI_TOP_PKT 0x02AC
172 GPIOK_NS 0x02B0
173 GPIOK_S 0x02B4
174 PWMCTRL1 0x02B8
175 G2D 0x02BC
176 EDP 0x02C0
177 0x02C4
178 0x02C8
179 CSI_PARSER3 0x02CC
180 NMI 0x02D0

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 260

Interrupt Number Interrupt Source Interrupt Vector Description
181 S_PPU 0x02D4
182 S_PPU1 0x02D8
183 TWD 0x02DC
184 CPUS_WDT 0x02E0
185 CPUS_TIMER0 0x02E4
186 CPUS_TIMER1 0x02E8
187 CPUS_TIMER2 0x02EC
188 S_TWI2 0x02F0
189 ALARM 0x02F4
190 GPIOL_S 0x02F8
191 GPIOL_NS 0x02FC
192 GPIOM_S 0x0300
193 GPIOM_NS 0x0304
194 S_UART0 0x0308
195 S_UART1 0x030C
196 S_TWI0 0x0310
197 S_TWI1 0x0314
198 0x0318
199 S_CIRRX 0x031C
200 S_PWMCTRL 0x0320
201 0x0324

202
AHBS_HREADY_TI
ME_OUT

0x0328

203
CPUIDLE(PCK600
_CPU)

0x032C

204 S_SPI 0x0330
205 S_SPINLOCK 0x0334

206
CPUS_MSGBOX_C
PUX

0x0338

207 0x033C
208 0x0340
209 0x0344
210 0x0348
211 0x034C
212 S_TWD 0x0350
213 0x0354
214 0x0358
215 0x035C
216 0x0360
217 MCU_TIMER0 0x0364
218 MCU_TIMER1 0x0368
219 MCU_TIMER2 0x036C

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 261

Interrupt Number Interrupt Source Interrupt Vector Description
220 MCU_AHB0_TO 0x0370
221 MCU_AHB1_TO 0x0374
222 AUDIO CODEC 0x0378
223 DMIC 0x037C
224 I2S0 0x0380
225 I2S1D 0x0384
226 I2S2 0x0388
227 I2S3 0x038C
228 OWA 0x0390
229 MCU_DMAC_NS 0x0394
230 MCU_DMAC_S 0x0398
231 0x039C
232 0x03A0
233 MCU_TIMER3 0x03A4
234 MCU_TIMER4 0x03A8
235 MCU_TIMER5 0x03AC
236 0x03B0
237 0x03B4
238 RISCV_WDT 0x03B8
239 MCU_PWMCTRL 0x03BC
240 0x03C0
241 0x03C4
242 0x03C8
243 0x03CC
244 0x03D0
245 0x03D4
246 0x03D8
247 0x03DC
248 0x03E0
249 0x03E4
250 0x03E8
251 0x03EC
252 0x03F0
253 0x03F4
254 0x03F8
255 0x03FC
CPUX Related

256 nERRIRQ[0] 0x0400
L3 ECC error that causes
potential data corruption
or loss of coherency

257 nERRIRQ[1] 0x0404
Core0 ECC error that
causes potential data

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 262

Interrupt Number Interrupt Source Interrupt Vector Description
corruption or loss of
coherency

258 nERRIRQ[2] 0x0408

Core1 ECC error that
causes potential data
corruption or loss of
coherency

259 nERRIRQ[3] 0x040C

Core2 ECC error that
causes potential data
corruption or loss of
coherency

260 nERRIRQ[4] 0x0410

Core3 ECC error that
causes potential data
corruption or loss of
coherency

261 nERRIRQ[5] 0x0414

Core4 ECC error that
causes potential data
corruption or loss of
coherency

262 nERRIRQ[6] 0x0418

Core5 ECC error that
causes potential data
corruption or loss of
coherency

263 nERRIRQ[7] 0x041C

Core6 ECC error that
causes potential data
corruption or loss of
coherency

264 nERRIRQ[8] 0x0220

Core7 ECC error that
causes potential data
corruption or loss of
coherency

265 nFAULTIRQ[0] 0x0424
L3 detected 1-bit or 2-bit
ECC or Parity error in the
RAMs

266 nFAULTIRQ[1] 0x0428
Core0 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

267 nFAULTIRQ[2] 0x042C
Core1 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

268 nFAULTIRQ[3] 0x0430
Core2 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 263

Interrupt Number Interrupt Source Interrupt Vector Description

269 nFAULTIRQ[4] 0x0434
Core3 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

270 nFAULTIRQ[5] 0x0438
Core4 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

271 nFAULTIRQ[6] 0x043C
Core5 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

272 nFAULTIRQ[7] 0x0440
Core6 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

273 nFAULTIRQ[8] 0x0444
Core7 detected 1-bit or
2-bit ECC or Parity error in
the RAMs

274
nCLUSTERPMUIR
Q

0x0448
Cluster PMU interrupt
request

275 GIC_FAULT_INT 0x044C
276 GIC_ERR_INT 0x0450
277 GIC_PMU_INT 0x0454
278 0x0458
279 0x045C
280 0x0460
281 0x0464
282 0x0468
283 0x046C
284 0x0470
285 0x0474
286 0x0478
287 0x047C

2.7.3 Register List

Module Name Base Address Comments
GIC
GIC600_MON_4 0x03400000 General interrupt controller(23*64KB)
GITS_TRANSLATER 0x03450000

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 278

2.8 Core-Local Interrupt Controller (CLIC)

2.8.1 Overview

The Core-Local Interrupt Controller (CLIC) is only used for sampling, priority arbitration and
distribution for external interrupt sources.

 supports RISC-V Core-Local Interrupt Controller Version 0.8 specification

 Up to 144 interrupt source sampling, supporting level interrupt and pulse interrupt

 32 levels of interrupt priority

 4 memory-mapped control registers for each interrupt

 Each attribute of this interrupt source can be configured by writing the control register of the
corresponding interrupt source.

2.8.2 Functional Description

The following table describes the detail of interrupt sources.

Table 2-16 Interrupt Sources

Interrupt
Number

Interrupt Source Interrupt Vector Description

0-15 Reserved 0x0000-0x003C Not Used
16 RISCV_WDT 0x0040 RISCV watchdog interrupt
17 RISCV_MSGBOX_RISCV 0x0044 RISCV MSGBOX read IRQ
18 0x0048
19 0x004C
20 0x0050
21 0x0054
22 0x0058
23 0x005C
24 0x0060
25 MCU_TIMER0 0x0064
26 MCU_TIMER1 0x0068
27 MCU_TIMER2_ 0x006C

28 AHB0_HREADY_TIME_OUT 0x0070
MCU AHB decoder0 timer out
interrupt

29 AHB1_HREADY_TIME_OUT 0x0074
MCU AHB decoder1 timer out
interrupt

30 AUDIO CODEC 0x0078 Audio Codec IRQ
31 DMIC 0x007C DMIC IRQ
32 I2S0 0x0080 I2S0 IRQ
33 I2S1 0x0084 I2S1 IRQ

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 279

Interrupt
Number

Interrupt Source Interrupt Vector Description

34 I2S2 0x0088 I2S2 IRQ
35 I2S3 0x008C I2S3 IRQ
36 OWA 0x0090 OWA IRQ

37 MCU_DMAC_NS 0x0094
MCU DMAC channel IRQ
non-secure to MCU

38 MCU_DMAC_S 0x0098
MCU DMAC channel IRQ secure
to MCU

39 0x009C
40 0x00A0
41 MCU_TIMER3 0x00A4
42 MCU_TIMER4 0x00A8
43 MCU_TIMER5 0x00AC
44 MCU_PWMCTRL 0x00B0 MCU PWMCTRL Interrupt
45 0x00B4
46 0x00B8
47 0x00BC
48 0x00C0
49 0x00C4
50 0x00C8
51 0x00CC
52 NMI 0x00D0 NMI interrupt in CPUS domain
53 S_PPU 0x00D4 PCK600 Q-channel Interrupt
54 S_PPU1 0x00D8 /
55 S_TWD 0x00DC S_TWD interrupt
56 CPUS_WDT 0x00E0 CPUS_WDT interrupt
57 CPUS_TIMER0 0x00E4 CPUS_TIMER0 interrupt
58 CPUS_TIMER1 0x00E8 CPUS_TIMER1 interrupt
59 CPUS_TIMER2 0x00EC CPUS_TIMER2 interrupt
60 S_TWI2 0x00F0
61 ALARM 0x00F4 RTC ALARM0 interrupt
62 GPIOL_S 0x00F8
63 GPIOL_NS 0x00FC
64 GPIOM_S 0x0100
65 GPIOM_NS 0x0104
66 S_UART0 0x0108 S_UART0 interrupt
67 S_UART1 0x010C
68 S_TWI0 0x0110
69 S_TWI1 0x0114
70 0x0118
71 S_CIRRX 0x011C S_CIRRX interrupt
72 S_PWMCTRL 0x0120 S_PWMCTRL interrupt

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 280

Interrupt
Number

Interrupt Source Interrupt Vector Description

73 0x0124

74 AHBS_HREADY_TOUT 0x0128
AHBS TIMEOUT interrupt in
CPUS domain

75 PCK600_CPU 0x012C
CPUIDLE(PCK600_CPU)
interrupt

76 S_SPI 0x0130 S_SPI interrupt
77 S_SPINLOCK 0x0134 S_SPINLOCK interrupt

78 CPUS_MSGBOX_CPUX 0x0138
CPUS MSGBOX write IRQ for
CPUX

79 0x013C
80 0x0140

81 CPUS_MSGBOX_RISCV 0x0144
CPUS MSGBOX write IRQ for
RISCV

82 0x0148
83 INT_SCRI[0] 0x014C CPUX_MSGBOX_IRQ_RISCV
84 INT_SCRI[1] 0x0150 CPUX_MSGBOX_IRQ_CPUS
85 INT_SCRI[2] 0x0154 SPLOCK_IRQ
86 0x0158
87 INT_SCRI[4] 0x015C
88 INT_SCRI[5] 0x0160 DMAC_IRQ1_NS
89 INT_SCRI[6] 0x0164 DMAC_IRQ1_S

90 INT_SCRI[7] 0x0168

GIC IRQ 32-39
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG0[7:0] in
S_INTC.
Group GIC IRQ bit [33:32] are
fixed to be masked.

91 INT_SCRI[8] 0x016C

GIC IRQ 40-47
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG0[15:8] in
S_INTC.

92 INT_SCRI[9] 0x0170

GIC IRQ 48-55
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG0[23:16] in
S_INTC.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 281

Interrupt
Number

Interrupt Source Interrupt Vector Description

93 INT_SCRI[10] 0x0174

GIC IRQ 56-63
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG0[31:24] in
S_INTC.

94 INT_SCRI[11] 0x0178

GIC IRQ 64-71
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG1[7:0] in
S_INTC.

95 INT_SCRI[12] 0x017C

GIC IRQ 72-79
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG1[15:8] in
S_INTC.

96 INT_SCRI[13] 0x0180

GIC IRQ 80-87
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG1[23:16] in
S_INTC.
Group GIC IRQ bit [83:82] are
fixed to be masked.

97 INT_SCRI[14] 0x0184

GIC IRQ 88-95
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG1[31:24] in
S_INTC.

98 INT_SCRI[15] 0x0188

GIC IRQ 96-103
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG2[7:0] in
S_INTC.

99 INT_SCRI[16] 0x018C

GIC IRQ 104-111
Group Interrupt, the
corresponding interrupt group
mask register is

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 282

Interrupt
Number

Interrupt Source Interrupt Vector Description

GINTC_CONFIG_REG2[15:8] in
S_INTC.

100 INT_SCRI[17] 0x0190

GIC IRQ 112-119
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG2[23:16] in
S_INTC.

101 INT_SCRI[18] 0x0194

GIC IRQ 120-127
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG2[31:24] in
S_INTC.

102 INT_SCRI[19] 0x0198

GIC IRQ 128-135
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG3[7:0] in
S_INTC.

103 INT_SCRI[20] 0x019C

GIC IRQ 136-143
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG3[15:8] in
S_INTC.

104 INT_SCRI[21] 0x01A0

GIC IRQ 144-151
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG3[23:16] in
S_INTC.

105 INT_SCRI[22] 0x01A4

GIC IRQ 152-159
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG3[31:24] in
S_INTC.

106 INT_SCRI[23] 0x01A8

GIC IRQ 160-167
Group Interrupt, the
corresponding interrupt group
mask register is

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 283

Interrupt
Number

Interrupt Source Interrupt Vector Description

GINTC_CONFIG_REG4[7:0] in
S_INTC.

107 INT_SCRI[24] 0x01AC

GIC IRQ 168-175
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG4[15:8] in
S_INTC.

108 INT_SCRI[25] 0x01B0

GIC IRQ 176-183
Group Interrupt, the
corresponding interrupt group
mask register is
GINTC_CONFIG_REG4[23:16] in
S_INTC.
Group GIC IRQ bit [183:180] are
fixed to be masked.

109 0x01B4
110 0x01B8
111 0x01BC
112 0x01C0
113 0x01C4
114 0x01C8
115 0x01CC
116 0x01D0
117 0x01D4
118 0x01D8
119 0x01DC
120 0x01E0
121 0x01E4
122 0x01E8
123 0x01EC
124 0x01F0
125 0x01F4
126 0x01F8
127 0x01FC
128 0x0200
129 0x0204
130 0x0208
131 0x020C
132 0x0210
133 0x0214

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 284

Interrupt
Number

Interrupt Source Interrupt Vector Description

134 0x0218
135 0x021C
136 0x0220
137 0x0224
138 0x0228
139 0x022C
140 0x0230
141 0x0234
142 0x0238
143 0x023C
144 0x0240

2.8.3 Register List

2.8.3.1 CLIC Register List

Module Name Base Address
RISCV CLIC 0xE080_0000

Register Name Offset Description
CLIC_CFG_REG 0x0000 CLIC Configuration Register
CLIC_MINTTHRESH_REG 0x0008 CLIC MINTTHRESH Register
CLIC_INT_REGn 0x1000+n*4 CLIC Interrupt Register n

2.8.3.2 S_INTC Register List

Module Name Base Address
S_INTC 0x0702_1000

Register Name Offset Description
GINTC_CONFIG_REG0 0x00C0 Group Interrupt Configuration Register 0
GINTC_CONFIG_REG1 0x00C4 Group Interrupt Configuration Register 1
GINTC_CONFIG_REG2 0x00C8 Group Interrupt Configuration Register 2
GINTC_CONFIG_REG3 0x00CC Group Interrupt Configuration Register 3
GINTC_CONFIG_REG4 0x00D0 Group Interrupt Configuration Register 4

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 289

2.9 I/O Memory Management Unit (IOMMU)

2.9.1 Overview

IOMMU (I/O Memory management unit) is designed for the specific memory requirements. It
maps the virtual address (sent by the peripheral access memory) to the physical address. IOMMU
allows multiple ways to manage the location of the physical address. It can use the physical
address which has the potentially conflict mapping for different processes to allocate the
memory space, and also allow application of non-continuous address mapping to the
continuous virtual address space.

The IOMMU has the following features:

 Supports virtual address to physical address mapping by hardware implementation

 Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI parallel address mapping

 Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI bypass function independently

 Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI pre-fetch independently

 Supports ISP, CSI, VE_MBUS0, VE_MBUS1, G2D, DE, and DI interrupt handing mechanism
independently

 Supports 2 levels TLB (level1 TLB for special using, and level2 TLB for sharing)

 Supports TLB Fully cleared and Partially disabled

 Supports trigger PTW behavior when TLBmiss

 Supports checking the permission

2.9.2 Block Diagram

The internal module of IOMMUmainly includes the following parts.

Micro TLB: Level1 TLB, 64 words. Each peripheral corresponds to a TLB, which caching the level2
page table for the peripheral.

Macro TLB: Level2 TLB, 4K words. Each peripheral shares a level2 TLB for caching the level2 page
table.

Pre-fetch Logic: Each Micro TLB corresponds to a Pre-fetch Logic. By monitoring each master
device to predict the bus access, the secondary page table corresponding to the address to be
accessed can be read from the memory and stored in the secondary TLB to improve the hit ratio.

PTW Logic: Page Table Walk, mainly contains PTW Cache and PTW. The PTW Cache is used to
store the level1 page table; when the virtual address is missed in the level1 and level2 TLB, it will
trigger the PTW. PTW Cache can store 512 level1 page tables, that is, 512 words.

PMU: Performance Monitoring Unit, which is used to count the hit efficiency and the latency.

APB Interface: IOMMU register instantiation module. CPU reads and writes the IOMMU register by
APB bus.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 290

The following figure shows the internal block diagram of IOMMU.

Figure 2-16 IOMMU Block Diagram

Table 2-17 Correspondence Relation between Master and Module

Master number module

Master0 ISP
Master1 CSI
Master2 VE_MBUS0
Master3 VE_MBUS1
Master4 G2D
Master5 DE
Master6 DI

2.9.3 Functional Descriptions

2.9.3.1 Initialization

 Release the IOMMU reset signal by writing 1 to the bit[31] of the IOMMU_RESET_REG (Offset:
0x0010);

 Write the base address of the first TLB to the IOMMU_TTB_REG (Offset: 0x0050);

 Set the IOMMU_INT_ENABLE_REG (Offset: 0x0100);

 Enable the IOMMU by configuring the IOMMU_ENABLE_REG (Offset: 0x0020) in the final.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 291

2.9.3.2 Address Translation

In the process of address mapping, the peripheral virtual address [31:12] are retrieved in the
Level1 TLB. When TLB is hit, the mapping is finished. Otherwise, they are retrieved in the Level2
TLB in the same way. If TLB is hit, the hit mapping will be written to the Level1 TLB, and hit in
Level1 TLB. If Level1 and Level2 TLB are retrieved fail, the PTW will be triggered. After opening
the peripheral bypass function by setting IOMMU_BYPASS_REG (Offset: 0x0030), IOMMU will not
map the address typed by this peripheral, and it will output the virtual address as the physical
address. The typical applications are as follows.

Micro TLB hit

Step 1 The master device sends a transfer command, and also sends the address to the
corresponding Micro TLB to search the Level2 page table related to the virtual address;

Step 2 If Micro TLB is hit, it will return a Level2 page table containing the corresponding
physical addresses and the permission Index;

Step 3 The address translation module converts the virtual address into the physical address,
and checks the permissions at the same time. If it is passed, the transfer is completed.

Micro TLBmiss, Macro TLB hit

Step 1 The master device sends a transfer command, and also sends the address to the
corresponding Micro TLB to search the Level2 page table related to the virtual address;

Step 2 If Micro TLB is missed, continue to search Macro TLB;

Step 3 If Macro TLB is hit, it will return the Level2 page table to Micro TLB;

Step 4 Micro TLB receives this page table, puts it in Micro TLB (If this Micro TLB is full, the
replace activities will happen), and sends the page table to the address translation
module at the same time;

Step 5 The address translation module converts the virtual address into the physical address,
and checks the permissions at the same time. If it is passed, the transfer is completed.

Micro TLBmiss, Macro TLBmiss, PTW Cache hit

Step 1 The master device sends a transfer command, and also sends the address to the
corresponding Micro TLB to search the Level2 page table related to the virtual address;

Step 2 If Micro TLB is missed, continue to search Macro TLB;

Step 3 If Macro TLB is missed, send the request to the PTW to return the corresponding page
table;

Step 4 PTW first accesses PTW Cache. If the required Level1 page table exists in the PTW Cache,
send the page table to PTW logic;

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 292

Step 5 PTW logic returns the corresponding Level2 page table from the memory page table
according to the Level1 page table, checks the effectiveness, and sends it to Macro TLB;

Step 6 Macro TLB stores the Level2 page table (the replace activities may happen), and returns
the Level2 page table to Micro TLB;

Step 7 Micro TLB receives this page table, puts it in the Micro TLB (if this Micro TLB is full, the
replace activities will happen), and sends the page table to the address translation
module at the same time;

Step 8 The address translation module converts the virtual address into the physical address,
and checks the permissions at the same time. If it is passed, the transfer is completed.

Micro TLBmiss, Macro TLBmiss, PTW Cachemiss

Step 1 The master device sends a transfer command, and also sends the address to the
corresponding Micro TLB to search the Level2 page table related to the virtual address;

Step 2 If Micro TLB is missed, continue to search Macro TLB;

Step 3 If Macro TLB is missed, send the request to the PTW to return the corresponding page
table;

Step 4 PTW accesses PTW Cache, there is no necessary Level1 page table;

Step 5 PTW accesses the memory, gets the corresponding Level1 page table and stores it in the
PTW Cache (the replace activities may happen);

Step 6 PTW logic returns the corresponding Level2 page table from the memory page table
according to the Level1 page table, checks the effectiveness, and sends it to Macro TLB;

Step 7 Macro TLB stores the Level2 page table (the replace activities may happen), and returns
the Level2 page table to Micro TLB;

Step 8 Micro TLB receives this page table, puts it in the Micro TLB (if this Micro TLB is full, the
replace activities will happen), and sends the page table to the address translation
module at the same time;

Step 9 The address translation module converts the virtual address into the physical address,
and checks the permissions at the same time. If it is passed, the transfer is completed.

Permission error

Step 1 The permission checking is always performed during the process of translating the
address;

Step 2 Once the permission checking makes mistake, the new access of the master suspends,
but the access before this checking can be continued;

Step 3 Set the error status register;

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 293

Step 4 Trigger the interrupt.

Invalid Level1 page table

Step 1 The invalid Level1 page table is checked when PTW logic reads the new level page table
from the memory;

Step 2 The PTW reads two sequential page table entries from the memory (64-bit data, a
complete cache line), and stores them in the PTW cache;

Step 3 If the current page table is invalid, the error flag is set and the interrupt is triggered. The
cache line needs to be invalidated.

NOTE

 Invalid page table has two situations: the reading target page table from the memory is
invalid, or the page table stored in PTW Cache with target page table is found to be invalid
after using;

 If a page table is invalid, invalidate the total cache line (that is two page tables).

Invalid Level2 page table

Step 1 The invalid Level2 page table is checked when Macro TLB reads the new level page table
from the memory;

Step 2 The Macro TLB reads two sequential page table entries from the memory (64-bit data, a
complete cache line), and stores them in the Macro TLB;

Step 3 If the current page table is invalid, the error flag is set and the interrupt is triggered. The
cache line needs to be invalidated.

NOTE

 Invalid page table has two situations: the reading target page table from the memory is
invalid, or the page table stored in Macro TLB with target page table is found to be invalid
after using;

 If a page table is invalid, invalidate the total cache line (that is two page tables).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 294

The internal address translation process is shown in the following figure.

Figure 2-17 Internal Switch Process

2.9.3.3 VA-PA Mapping

IOMMU page table is defined as the Level2 mapping. The first level is 1M address space mapping,
the second level is 4K address space. This version does not support 1K, 16K and other page table
sizes. IOMMU only supports a page table, the meaning is:

 All peripherals connected to IOMMU use the same virtual address space;

 The virtual address space of the peripherals can overlap;

 Different virtual addresses can map to the same physical address space;

Base address of this page table is defined by the software, and it needs 16 KB address alignment.
The page table of the Level2 table item needs 1 KB address alignment. A complete VA-PA address
translation process is shown in the following figure.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 295

Figure 2-18 VA-PA Switch Process

2.9.3.4 Clearing and Invalidating TLB

When multi page table contents are refreshed or table address changes, all VA-PA mappings
which have been cached in TLB will be invalid. You need to configure
IOMMU_TLB_FLUSH_ENABLE_REG (Offset: 0x0080) to clear the TLB or PTW Cache according to
the following steps:

Step 1 Suspend the access to TLB or Cache.

Step 2 Configure the corresponding Flush bit of IOMMU_TLB_FLUSH_ENABLE_REG (Offset:
0x0080).

Step 3 After the operation takes effect, the related peripherals can continue to send the new
access memory operations.

When some page table is invalid or the mapping is incorrect, you can set the TLB Invalidation
relevant register to invalidate TLB VA-PA mapping pairs. The invalid TLB supports the following
twomodes:

 Mode0

Step 1 Set IOMMU_TLB_IVLD_MODE_SEL_REG (Offset: 0x0084) to 0 and select mode0;

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 296

Step 2 Write the target address to IOMMU_TLB_IVLD_ADDR_REG (Offset: 0x0090);

Step 3 Set the configuration values to IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094),
the requirements are as follows:

- The value of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) cannot be less than
the IOMMU_TLB_IVLD_ADDR_REG (Offset: 0x0090).

- The higher bit of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) must be
continuous 1, the lower bit must be continuous 0. For example, 0xFFFFF000, 0xFFFFE000,
0xFFFFC000, 0xFFFF8000, and 0xFFFF0000 are legal values; while 0xFFFFD000,
0xFFFFB000, 0xFFFFA000, 0xFFFF9000, and 0xFFFF7000 are illegal values.

Step 4 Configure IOMMU_TLB_IVLD_ENABLE_REG (Offset: 0x0098) to enable the invalid
operation. Among the way to determine the invalid address is to get the maximum valid
bit and determine the target address range by the target address AND the mask address.
The process is shown as follows.

Figure 2-19 Invalid TLB Address Range

The examples are shown below:

- When the value of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) is 0xFFFFF000 by
default, the result of AND is target address. That is, only the target address is invalid.

- When the value of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) is 0xFFFF0000, the
value of IOMMU_TLB_IVLD_ADDR_REG (0x0090) is 0xEEEE1000, then target address range is
from 0xEEEE0000 to 0xEEEEF000.

- When the value of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) is 0xFFFFC000, the
value of IOMMU_TLB_IVLD_ADDR_REG (0x0090) is 0xEEEE8000, then target address range is
from 0xEEEE8000 to 0xEEEEB000.

- When the value of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) is 0xFFFF8000, the
value of IOMMU_TLB_IVLD_ADDR_REG (0x0090) is 0xEEEEC000, then target address range is
from 0xEEEE8000 to 0xEEEEF000.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 297

- When the value of IOMMU_TLB_IVLD_ADDR_MASK_REG (Offset: 0x0094) is 0xFFFFC000, the
value of IOMMU_TLB_IVLD_ADDR_REG (0x0090) is 0xEEEE0000, then target address range is
from 0xEEEE0000 to 0xEEEE3000.

 Mode1

Step 1 Set IOMMU_TLB_IVLD_MODE_SEL_REG (Offset: 0x0084) to 1 and select mode1;

Step 2 Set the starting address and the ending address of the invalid TLB by
IOMMU_TLB_IVLD_STA_ADDR_REG (Offset: 0x0088);

Step 3 Configure IOMMU_TLB_IVLD_ENABLE_REG (Offset: 0x0098) to enable the invalid
operation, then the TLB invaliding operation can be completed.

2.9.3.5 Clearing and Invalidating PTW Cache

 Mode0

Step 1 Set IOMMU_PC_IVLD_MODE_SEL_REG (Offset: 0x009C) to 0 and select mode0.

Step 2 Invalid the IOMMU_PC_IVLD_ADDR_REG (Offset: 0x00A0), 1MB aligned.

Step 3 Configure IOMMU_PC_IVLD_ENABLE_REG (Offset: 0x00A8) to enable the invalid
operation, then you can invalid one piece of CacheLine.

 Mode1

Step 1 Set IOMMU_PC_IVLD_MODE_SEL_REG (Offset: 0x009C) to 1 and select mode1.

Step 2 Set the starting address and the ending address of the invalid TLB by
IOMMU_PC_IVLD_STA_ADDR_REG (Offset: 0x00A4).

Step 3 Configure IOMMU_PC_IVLD_ENABLE_REG (Offset: 0x00A8) to enable the invalid
operation, then you can invalid a period of sections.

2.9.3.6 Level1 Page Table

The format of Level1 page table is as follows.

Figure 2-20 Level1 Page Table Format

Bit [31:10]: Base address of Level2 page table;

Bit [9:2]: Reserved;

Bit [1:0]: 01 is a valid page table; other values are fault;

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 298

2.9.3.7 Level2 Page Table

The format of Level2 page table is as follows.

Figure 2-21 Level2 Page Table Format

Bit [31:12]: Physical address of 4K address;

Bit [11:8]: Reserved;

Bit [7:4]: ACI, permission control index; correspond to permission control bit of IOMMU Domain
Authority Control Register;

Bit [3:2]: Reserved;

Bit [1]: 1 is a valid page table; 0 is fault;

Bit [0]: Reserved

2.9.4 Programming Guidelines

2.9.4.1 Resetting IOMMU

Before the IOMMU module software reset operation, make sure IOMMU is never opened, or all
bus operations are completed, or DRAM and peripherals already open the corresponding switch,
to shield the influence of IOMMU reset.

2.9.4.2 Enabling IOMMU

Before opening the IOMMU address mapping function, IOMMU_TTB_REG (Offset: 0x0050) should
be correctly configured, or all the masters are in the bypass state, or all the masters do not send
the bus command.

2.9.4.3 Configuring TTB

Operating the register must close IOMMU address mapping function, namely
IOMMU_ENABLE_REG (Offset: 0x0020) is 0; or Bypass function of all masters is set to 1, or no the
state of transfer bus commands.

2.9.4.4 Clearing TTB

In the Flush operation, all TLB/Cache access will be suspended; but the operation entered the
TLB will continue to complete before the Flush starts.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 299

2.9.4.5 Reading/Writing VA Data

For the virtual address, read and write the corresponding physical address data to make sure
whether IOMMU module address mapping function is normal. First, make sure to read or write,
and then configure the target virtual address or write data, then start to read or write function,
after the operation is finished, check if the results are as expected.

2.9.4.6 PMU Statistics

When PMU function is used for the first time, set IOMMU_PMU_ENABLE_REG (Offset: 0x0200) to
enable statistics function; when reading the relevant Register, clear the enable bit of
IOMMU_PMU_ENABLE_REG (Offset: 0x0200); when PMU function is used next time, first
IOMMU_PMU_CLR_REG (Offset: 0x0210) is set, after counter is cleared, set the enable bit of
IOMMU_PMU_ENABLE_REG (Offset: 0x0200).

Given a Level2 page table administers continuous 4KB address, if Micro TLB misses in continuous
virtual address, a Level2 page table needs to be returned from Macro TLB to hit; but the hit
number is not recorded in the Macro TLB hit and Micro TLB hit related register. So the true hit
rate calculation is as follows:

2.9.5 Register List

Module Name Base Address
IOMMU 0x0201_0000

Register Name Offset Description
IOMMU_RESET_REG 0x0010 IOMMU Reset Register
IOMMU_ENABLE_REG 0x0020 IOMMU Enable Register
IOMMU_BYPASS_REG 0x0030 IOMMU Bypass Register
IOMMU_AUTO_GATING_REG 0x0040 IOMMU Auto Gating Register
IOMMU_WBUF_CTRL_REG 0x0044 IOMMUWrite Buffer Control Register
IOMMU_OOO_CTRL_REG 0x0048 IOMMU Out Of Order Control Register

IOMMU_4KB_BDY_PRT_CTRL_REG 0x004C
IOMMU 4KB Boundary Protect Control
Register

IOMMU_TTB_REG 0x0050 IOMMU Translation Table Base Register
IOMMU_TLB_ENABLE_REG 0x0060 IOMMU TLB Enable Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 339

2.10 Message Box (MSGBOX)

2.10.1 Overview

The Message Box (MSGBOX) provides interrupt communication mechanism for on-chip
processor.

The MSGBOX has the following features:

 Supports communication between two CPUs through one way channels. Each CPU has one
MSGBOX and can only read or write in one communication

- CPUX_MSGBOX: CPUS/RISC-V write; ARM CPU read

- CPUS_MSGBOX: ARM CPU/RISC-V write; CPUS read

- RISCV_MSGBOX: ARM CPU/CPUS write; RISC-V read

 The channel between two CPU has 4 channels, and the FIFO depth of a channel is 8 x 32 bits

 Supports interrupts

2.10.2 Block Diagram

The following figure shows the block diagram of the message box.

Figure 2-22 Message Box Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 340

Each CPU has 4 channels. The two channels can be configured to be secure by software, the
other two channels can be configured to be non-secure by software. The two secure channels or
two non-secure channels can be configured as one synchronous box (Sending a message
requires a response) or one asynchronous box (Sending a message does not require a response).

2.10.3 Functional Description

2.10.3.1 Clock and Reset

The MSGBOX is mounted on AHB. Before accessing the MSGBOX registers, you need to de-assert
the MSGBOX reset signal on AHB bus and then open the MSGBOX gating signal on AHB bus.

2.10.3.2 Transmitter/Receiver Mode

At the same channel, user1 is fixed as transmitter, user0 is fixed as receiver.

2.10.3.3 Typical Application

Several masters can build communication by configuring the MSGBOX. The communication
parties have 4 channels. In a channel, the user1 is fixed as the transmitter and the user0 is fixed
as the receiver. During the communication process, the current status can be judged through the
interrupt or FIFO status.

2.10.3.4 Interrupt

Each channel can configure indepedently the interrupt enable bit, a read interrupt will be
generated when the channel is empty, a write interrupt will be generated when the channel is
non-full. For each CPU, all channels generate a read interrupt together, that is, if only a channel
is non-full, the read interrupt will be generated, this channel can be obtained by quering the
interrupt status register.

2.10.3.5 FIFO Status

When channel FIFO is non-full, the FIFO_NOT_AVA_FLAG is 0, at the moment the FIFO can be
written.

When channel FIFO is full, the FIFO_NOT_AVA_FLAG is 1, at the moment if FIFO is written again,
the first data of FIFO can be covered.

See MSGBOX_FIFO_STATUS_REG for FIFO status.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 341

2.10.4 Programming Guidelines

2.10.4.1 Checking the Transfer Status via the Interrupt

Follow the steps below to check the transfer status:

Step 1 Enable the interrupt for the channel: Configure the interrupt enable bits of
transmitter/receiver through MSGBOX_WR_IRQ_EN_REG/MSGBOX_RD_IRQ_EN_REG.
(user0: RX interrupt enable; user1: TX interrupt enable)

Step 2 Check the IRQ status of the corresponding queue through
MSGBOX_WR_IRQ_STATUS_REG/MSGBOX_RD_IRQ_STATUS_REG.

- If the FIFO is not full, the channel generates a transmission interrupt to remind the
transmitter to transmit data. Write data to the FIFO in the interrupt handler, then clear
the pending bit of the transmitter in MSGBOX_WR_IRQ_STATUS_REG and the enable bit
of the transmitter in MSGBOX_WR_IRQ_EN_REG.

- If the FIFO has new data, the channel generates a reception interrupt to remind the
receiver to receive data. Read data from the FIFO in interrupt handler, then clear the
pending bit of the receiver in MSGBOX_RD_IRQ_STATUS_REG and the enable bit of the
receiver in MSGBOX_RD_IRQ_EN_REG.

2.10.4.2 Checking the Transfer Status via the FIFO

Follow the steps below to check the FIFO status of the corresponding queue:

 If the FIFO is not full, the transmitter fills the FIFO to 8*32 bits.

 If the FIFO is full, the receiver reads the FIFO data, and reads MSGBOX_FIFO_STATUS_REG to
acquire the current FIFO data amount and the FIFO data amount before reading, which
means no data is dropped.

2.10.4.3 Transmitting/Receiving Message

The following figure shows the communication process between CPUX_MSGBOX and
CPUS_MSGBOX.

CPUX_MSGBOX: Receiving message

CPUS_MSGBOX: Transmitting message

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 342

Figure 2-23 The Communication Process between CPUX_MSGBOX and CPUS_MSGBOX

2.10.5 Register List

Module Name Base Address
CPUX_MSGBOX 0x0300 3000
CPUS_MSGBOX 0x0709 4000
RISCV_MSGBOX 0x0713 6000

Parameter Description Value
N The CPU numbers that communicates with the current CPU 0 or 2
P The channel numbers between two communication CPU 0-3

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 350

2.11 Power Reset Clock Management (PRCM)

2.11.1 Overview

The Power Reset Clock Management (PRCM) module is one of the most import design aspects in
this system. It provides a versatile supporting multiple power-management techniques. And it
also manages the gating and enabling of the clocks to the device modules.

The system-level reset management provides correct reset routing and sequencing when one or
more devices are stacked together in the same package. The device-level reset management
provides reset routing to relevant devices, such as CPUS_TIMER, S_UART and so on.

The PRCM has the following features:

 Two PRCMs in CPUS domain: PRCM and MCU_PRCM

 1 PLL

 CPUS Clock Configuration

 APBS Clock Configuration

 CPUS Module Clock Configuration

 CPUS Module BUS Gating and Reset

 RAM configure Control for PRCM

NOTE

 There are 15 PLLs in A523. 10 PLLs in CCU, 4 PLLs in CPUX system, and 1 PLL in MCU_PRCM.

 PRCM describes module clocks in CPUS domain.

 For clock description of CPUX system, please refer to section 2.2.3.2 CPU PLL Distribution
and Clock Sources.

 For module clocks in CPUX domain (excluding the clocks of CPUX system.), please refer to
section 2.5 Clock Controller Unit (CCU).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 351

2.11.2 Functional Description

2.11.2.1 System Bus Tree

The following figures show the diagram of the System Bus Tree.

Figure 2-24 System Bus Tree of PRCM

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 352

Figure 2-25 System Bus Tree of MCU_PRCM

2.11.2.2 Bus Clock Tree

The following figures show a block diagram of the clock tree Diagram in CPUS domain.

Figure 2-26 Bus Clock Tree

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 353

2.11.2.3 PLL Distribution

The following figures show the block diagram of the PLL distribution.

Figure 2-27 PLL Distribution of PRCM

NOTE

PERI0PLL(1X) is PERI0_600M = PERI0PLL2X/2. For detailed information of PLL_PERI0, see section
2.5.3.3 PLL Features.

Figure 2-28 PLL Distribution of MCU_PRCM

2.11.2.4 PLL Features

The following table shows the PLL features.

Table 2-18 PLL Features

PLL
Stable Operating
Frequency

Actual Operating
Frequency

Spread
Spectrum

Linear
FM

Pk-Pk
Lock
Time

PLL_AUDIO1 1.52 GHz-3.1GHz

Integer mode:
1/2x: 1.536 GHz
1/5x: 614.4 MHz
Decimal mode:
1/2x: 1.1179648 GHz
1/5x: 471.8592 MHz

Yes No < 200ps 500us

2.11.3 Programming Guidelines

2.11.3.1 Enabling the PLL

Follow the steps below to enable the PLL:

Step 1 Configure the N, M, and P factors of the PLL control register.

Step 2 Write 1 to the PLL_EN bit (bit [31]) and the PLL_LDO_EN bit (bit [30]) of the PLL control
register, write 0 to the PLL_OUTPUT_GATE bit (bit [27]) of the PLL control register.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 354

Step 3 Write 1 to the LOCK_ENABLE bit (bit [29]) of the PLL control register.

Step 4 Wait for the status of the Lock to change to 1.

Step 5 Delay 20 us.

Step 6 Write the PLL_OUTPUT_GATE bit (bit [27]) of the PLL control register to 1 and then the
PLL will be available.

2.11.3.2 Configuring the Frequency of PLL_AUDIO1

The frequency configuration formula of PLL_AUDIO1:

PLL_AUDIO1 = 24 MHz*N/M0/M1/P

PLL_AUDIO1 does not support dynamic adjustment because changing any parameter of N, M0,
M1, and P will affect the normal work of PLL, and the PLL will need to be relocked.

Generally, PLL_AUDIO1 only needs two frequency points: 24.576*4 MHz or 22.5792*4 MHz. For
these two frequencies, there are usually special recommended matching factors. To implement
the desired frequency point of PLL_AUDIO1, you need to use the decimal frequency-division
function, so follow the steps below:

Step 1 Configure the N, M0, M1 and P factors.

Step 2 Write 1 to the PLL_SDM_EN bit (bit [24]) of PLL_AUDIO1_CTRL register.

Step 3 Configure PLL_AUDIO1_PAT0_CTRL register to enable the digital spread spectrum.

Step 4 Write 0 and then write 1 to the LOCK ENABLE bit (bit [29]) of PLL_AUDIO1_CTRL register.

Step 5 Write 1 to the LOCK bit (bit [28]) of PLL_ AUDIO1_CTRL register.

End

NOTE

When the P factor of PLL_AUDIO1 is an odd number, the clock output is an unequal-duty-cycle
signal.

2.11.3.3 Disabling the PLL

Follow the steps below to disable the PLL:

Step 1 Write 0 to the PLL_EN bit (bit [31]) and the PLL_LDO_EN bit (bit [30]) of the PLL control
register.

Step 2 Write 0 to the LOCK_ENABLE bit (bit [29]) of the PLL control register.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 355

2.11.3.4 Implementing Spread Spectrum

The spread spectrum technology is to convert a narrowband signal into a wideband signal. It
helps to reduce the effect of electromagnetic interference (EMI) associated with the fundamental
frequency of the signal.

For the general PLL frequency, the calculation formula is as follows:

   
1024

1110
1





 XMHz,

MMP
XN

f

Where,

P is the frequency division factor of module or PLL;

M0 is the post-frequzency division factor of PLL;

M1 is the pre-frequency division factor of PLL;

N is the frequency doubling factor of PLL;

X is the amplitude coefficient of the spread spectrum.

The parameters N, P, M1, and M0 are for the frequency division.

When M1 = 0, M0 = 0, and P = 1 (no frequency division), the calculation formula of PLL frequency
can be simplified as follows:

  10241  XMHz, XNf

  MHzXXNff 24] ,[1] ,[2121 

1
172_ XBOTSDM 

    2/MHz 24/2WAVE_STEP 12
17  PREQXX

Where, SDM_BOT and WAVE_STEP are bits of the PLL pattern control register, and PREQ is the
frequency of the spread spectrum.

Follow the steps below to implement the spread spectrum:

Step 1 Configure the control register of the corresponding PLL

a) Calculate the factor N and decimal value X according to the PLL frequency and PLL
frequency formula. Refer to the control register of the corresponding PLL (named
PLL_xxx_CTRL_REG, where xxx is the module name) in 3.3.6 Register Description for
the corresponding PLL frequency formula.

b) Write M0, M1, N, and PLL frequency to the PLL control register.

c) Configure the PLL_SDM_EN bit (bit [24]) of the PLL control register to 1 to enable
the spread spectrum function.

Step 2 Configure the pattern control register of the corresponding PLL

a) Calculate the SDM_BOT and WAVE_STEP of the pattern control register according
to decimal value X and spread spectrum frequency (the bit [18:17] of the PLL
pattern register)

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 356

b) Configure the spread spectrum mode (SPR_FREQ_MODE) to 2 or 3.

c) If the PLL_INPUT_DIV2 of the PLL control register is 1, configure the spread
spectrum clock source select bit (SDM_CLK_SEL) of the PLL pattern control register
to 1. Otherwise, configure SDM_CLK_SEL to the default value 0.

d) Write SDM_BOT, WAVE_STEP, PREQ, SPR_FREQ_MODE, and SDM_CLK_SEL to the
PLL pattern control register, and configure the SIG_DELT_PAT_EN bit (bit[31]) of
this register to 1.

Step 3 Delay 20 us

2.11.3.5 Configuring Bus Clock

The bus clock supports dynamic switching, but the process of switching needs to follow the
following two rules.

 From a higher frequency to a lower frequency: switch the clock source first, and then set the
frequency division factor;

 From a lower frequency to a higher frequency: configure the frequency division factor first,
and then switch the clock source.

The typical bus frequency for each bus in PRCM and MCU_PRCM is as follows:

 AHBS: 200 MHz

 APBS0: 100 MHz

 APBS1: 24 MHz

2.11.3.6 Configuring Module Clock

For the Bus Gating Reset register of a module, the reset bit is de-asserted first, and then the clock
gating bit is enabled to avoid potential problems caused by the asynchronous release of the
reset signal.

For all module clocks except the DDR clock, configure the clock source and frequency division
factor first, and then release the clock gating (that is, set to 1). For the configuration order of the
clock source and frequency division factor, follow the rules below:

 With the increasing of the clock source frequency, configure the frequency division factor
before the clock source.

 With the decreasing of the clock source frequency, configure the clock source before the
frequency division factor.

2.11.4 Register List

PRCMmodule includes two groups of registers:

Module Name Base Address

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 406

2.12 RTC

2.12.1 Overview

The Real Time Clock (RTC) is used to implement the time counter and the timing wakeup
functions. The RTC can display the year, month, day, week, hour, minute, second in real time.
The RTC has the independent power to continue to work in system power-off.

The RTC has the following features:

 Provides a 16-bit counter for counting day, 5-bit counter for counting hour, 6-bit counter for
counting minute, 6-bit counter for counting second

 Timer frequency is 1 kHz

 Configurable initial value by software anytime

 Supports timing alarm, and generates interrupt and wakeup the external devices

 Supports fanout function of internal 32K clock

 8 general purpose registers for storing the power-off information

 Multiple special registers for recording the BROM information

NOTE

The register configuration of RTC is AHB bus, it only can support word operation, not byte
operation and half-word operation.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 407

2.12.2 Block Diagram

The following figure shows the block diagram of the RTC.

Figure 2-29 RTC Block Diagram

2.12.3 Functional Descriptions

2.12.3.1 External Signals

Table 2-19 RTC External Signals

Signal Name Description Type

X32KFOUT
32.768 kHz clock Fanout
Provides low frequency clock for external devices

AO,OD

X32KIN Clock Input of 32.768 kHz Crystal AI
X32KOUT Clock Output of 32.768 kHz Crystal AO
DXIN Digital Compensated Crystal Oscillator Input AI
DXOUT Digital Compensated Crystal Oscillator Output AO

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 408

Signal Name Description Type
REFCLK-OUT Digital Compensated Crystal Oscillator Clock Fanout AO
WREQIN Request signal of REFCLK_OUT AI
NMI Non-Maskable Interrupt I/O, OD
RESET Reset Signal (Low Active) I/O, OD
VCC-DCXO Digital Compensated Crystal Oscillator Power Supply P
VCC-RTC RTC Power P

2.12.3.2 Typical Application

Figure 2-30 RTC Application Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 409

2.12.3.3 Clock Tree

The following figure shows the clock tree of the RTC.

Figure 2-31 RTC Clock Tree

RTC

The RTC has three clock sources:

 32K divided by internal 16 MHz RC

 32K divided by external DCXO

 external 32.768 kHz crystal

The RTC selects the internal RC by default, when the system starts, the RTC can select the
external low frequency crystal to provide much accurate clock by software. The clock accuracy of
the RTC is related to the accuracy of the external low frequency crystal. Usually 32.768 kHz
crystal with ±50 ppm frequency tolerance is selected as the clock source. When using internal RC,
the clock can be changed by changing division ratio. When using external clock, the clock cannot
be changed.

System 32K

The system32K has three clock sources:

 32K divided by the internal 16 MHz RC

 32K divided by external DCXO

 external 32.768 kHz crystal

RTC_32K_FANOUT

The RTC_32K_FANOUT has three clock sources:

 32K divided by the internal 16 MHz RC

 32K divided by external DCXO

 external 32.768 kHz crystal

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 410

2.12.3.4 Real Time Clock

Figure 2-32 RTC Counter

The 1 kHz counter adds 1 on each rising edge of the clock. When the clock number reaches 0x3FF,
1 kHz counter starts to count again from 0, and the second counter adds 1. The step structure of
1 kHz counter is as follows.

Figure 2-33 RTC 1 kHz Counter Step Structure

According to above implementation, the changing range of each counter is as follows.

Table 2-20 RTC Counter Changing Range

Counter Range
Second 0 to 59
Minute 0 to 59
Hour 0 to 23

Day
0 to 65535 (The year, month, day need be transformed by software
according to day counter)

CAUTION

Because there is no error correction mechanism in the hardware, note that each counter
configuration should not exceed a reasonable counting range.

2.12.3.5 Alarm 0

The principle of alarm0 is a comparator. When RTC timer reaches scheduled time, the RTC generates
the interrupt, or outputs low level signal by NMI pin to wakeup power management chip.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 411

The RTC only generates one interrupt when RTC timer reached the scheduled day, hour, minute and
second counter, then the RTC need set a new scheduled time, the next interrupt can be generated.

2.12.3.6 RTC-VIO

The RTC module has a LDO, the input source of the LDO is VCC-RTC, the output of the LDO is RTC-VIO,
the value of RTC-VIO is adjustable, the RTC_VIO is mainly used for internal digital logic.

2.12.3.7 RC Calibration

Figure 2-34 Calibration Circuit

Figure 2-35 RCWaveform

The basic circuit of RC calibration is shown in Figure 2-34. Whether to output the calibrated RC
clock can be selected by the RC_Cali_SEL control bit, the calibration principle is as follows:

Step 1 As shown in Figure 2-35, with DCXO 24M as the reference clock, calculate the counter
number M of RC clock within 1 ms/16 ms/128 ms to obtain the accurate frequency of
internal RC.

Step 2 Divide the accurate frequency by 32.768 kHz and the frequency divider(K) from RC clock
to 32.768 kHz is obtained.

Step 3 Divide RC16M by the frequency divider(K) to obtain 32.768 kHz frequency.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 412

NOTE

The calibration principle is to output 32.768 kHz, not to input 16 MHz.

2.12.3.8 DCXO TimedWakeup

The logic of DCXO timed wakeup circuit includes two controls: timed wakeup hardware
automatic enable and timed wakeup time length (software configuration). The timed wakeup
means that DCXO circuit is required to wakeup the output clock once every second (1s-60s,
usually the ambient temperature changes little in a few seconds) for 32K calibration in the super
standby or shutdown scenario, after calibration, DCXO circuit is closed, the closed time is timed
wakeup time length (software configuration). The time of DCXO circuit from wakeup starting to
stable output is 3 ms-4 ms. Although the timed wakeup function is closed, DCXO circuit always
had worked. The process of timed wakeup is shown in the following figure.

Figure 2-36 DCXO TimedWakeup Waveform

The time of a calibration in shutdown or super standby:

the timed wakeup time configured by software + the clock time of DCXO from wakeup to stable
output + the time of a calibration.

The timed wakeup time configured by the software in the figure is 1 s, and can be configured by
software in application. It is the theoretical maximum value for DCXO from wakeup to stable
output clock in 4 ms, the specific value is subject to IC measured results. In the any time of these
three periods, the startup or exit of the super standby action will not cause DCXO abnormal.

The enable signal of DCXO and the enable signal of timed wakeup DCXO is “OR” logic, and they
do not contradict each other.

The interval between continuous DCXO enable operation and disable operation is at least
greater than 4 ms.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 413

2.12.3.9 RC Calibration Usage Scenario

Power-on: Select non-accurate 32K divided by internal RC.

Normal scenario: Select external accurate 32K, or external calibrated 32K.

Standby or power-off scenario: Select external accurate 32K, or external calibrated 32K.

2.12.4 Programming Guidelines

2.12.4.1 RTC Clock Control

Step 1 Select clock source: Select clock source by the bit0 of LOSC_CTRL_REG, the clock source
is the internal RC oscillator by default. When the system starts, the clock source can be
switched to the external 32K oscillator by software.

Step 2 Auto switch: After enabled the bit [15:14] of LOSC_CTRL_REG, the RTC automatically
switches clock source to the internal oscillator when the external crystal could not
output waveform, the switch status can query by the bit [1] of
LOSC_AUTO_SWT_STA_REG.

NOTE

If only configuring the bit [15] of LOSC_CTRL_REG, the clock source status bit cannot be changed
after the auto switch is valid, because the two functions are independent.

Here are the basic code samples.

Write (0x16aa4000, LOSC_Ctrl); //Write key field

Write (0x16aa4001, LOSC_Ctrl); //Select the external 32K clock

2.12.4.2 RTC Calendar

Step 1 Write time initial value: Write the current time to RTC_DAY_REG and
RTC_HH_MM_SS_SET_REG.

Step 2 After updated time, the RTC restarts to count again. The software can read the current
time anytime.

NOTE

 The RTC can only provide day counter, so the current day counter need be converted to year,
month, day and week by software.

 Ensure the bit [8:7] of LOSC_CTRL_REG is 0 before the next time configuration is performed.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 414

Here are the basic code samples.

For example: set time to 21st, 07:08:09 and read it.

RTC_DAY_REG = 0x00000015;

RTC_HH_MM_SS_REG = 0x00070809; //0000 0000 000|0 0000(Hour) 00|00 0000(Minute) 00|00
0000(Second)

Read (RTC_DAY_REG);

Read (RTC_HH_MM_SS_REG);

2.12.4.3 Alarm0

Step 1 Enable alram0 interrupt by writing ALARM0_IRQ_EN.

Step 2 Set the counter comparator, write the count-down day, hour, minute, second number to
ALARM0_DAY_SET_REG and ALARM0_CUR_VLU_REG.

Step 3 Enable alarm0 function by writing ALARM0_ENABLE_REG, then the software can query
alarm count value in real time by ALARM0_DAY_SET_REG and ALARM0_CUR_VLU_REG.
When the setting time reaches, ALARM0_IRQ_STA_REG is set to 1 to generate interrupt.

Step 4 After enter the interrupt process, write ALARM0_IRQ_STA_REG to clear the interrupt
pending, and execute the interrupt process.

Step 5 Resume the interrupt and continue to execute the interrupted process.

Step 6 The power-off wakeup is generated via SoC hardware and PMIC, the software only
needs to set the pending condition of alarm0, and set ALARM0_CONFIG_REG to 1.

2.12.4.4 Fanout

CLK32K Fanout

Set the LOSC_OUT_GATING bit (bit [0]) of CLK32K_FOUT_CTRL_GATING_REG register to 1, and
ensure external pull-up resistor, voltage, and clock source are normal, then 32.768kHz square
wave can be output.

CLK24M Fanout

To fanout CLK24M clock though REFCLK-OUT pin, configure the CLK_REQ_ENB bit (bit [31]) of
DCXO_CTRL_REG register.

2.12.5 Register List

Module Name Base Address
RTC 0x0709 0000

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 429

2.13 Spinlock

2.13.1 Overview

The spinlock provides hardware synchronization mechanism in multi-core systems. With the lock
operation, the spinlock prevents multiple processors from handling the sharing data
simultaneously and thus ensure the coherence of data.

The spinlock has the following features:

 Supports 32 lock units

 Two kinds of lock status: locked and unlocked

 Lock time of the processor is predictable (less than 200 cycles)

2.13.2 Block Diagram

The following figure shows the block diagram of the spinlock.

Figure 2-37 Spinlock Block Diagram

2.13.3 Functional Description

2.13.3.1 Clock and Reset

The spinlock is mounted on AHB. Before accessing the spinlock registers, you need to de-assert
the reset signal on AHB bus and then open the corresponding gating signal on AHB bus.

2.13.3.2 Typical Application

The following figure shows a typical application of the spinlock. A processor locks spinlock0
before executing specific codes, and then unlocks the codes. After the lock is freed, other
processors can read or write the data.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 430

Figure 2-38 Spinlock Typical Application Diagram

2.13.3.3 Spinlock State Machine

When a processor uses spinlock, it needs to acquire the spinlock status through
SPINLOCK_STATUS_REG.

Reading operation

when the return value is 0, it indicates that the spinlock enters the locked status; reading this
status bit again can return 1, it indicates that the spinlock is the locked status.

Writing operation

when the spinlock is in the locked status, writing 0 can convert the spinlock to the unlocked
status, the writing operation for other status is invalid.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 431

The following figure shows the spinlock state machine.

Figure 2-39 Spinlock State Machine

 When the spinlock is in the unlocked state, writing 0/1 has no effect;

 When the spinlock is in the locked state, writing 0 can convert the corresponding spinlock to
the unlocked state;

 When the spinlock is in the locked state, writing 1 has no effect;

 When the spinlock is in the unlocked state, reading the bit can return 0 (it indicates spinlock
enters into the locked state);

 When the spinlock is in the locked state, reading the bit can return 1 (it indicates spinlock is
in the locked state);

 After reset, the spinlock is in the unlock state by default.

2.13.4 Programming Guidelines

2.13.4.1 Switching the Status

Follow the steps below to switch the lock status of a spinlock.

Step 1 When the read value from SPINLOCKN_LOCK_REG (N=0–31) is 0, the spinlock comes
into the locked status.

Step 2 Execute the application codes, and the status of SPINLOCK_STATUS_REG is 1.

Step 3 Write 0 to SPINLOCKN_LOCK_REG (N=0–31), the spinlock converts into the unlocked
status, and the corresponding spinlock is released.

2.13.4.2 Processing the Interrupt

The spinlock generates an interrupt when a lock is freed (the lock status converts from the
locked status to the unlocked status).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 432

Follow the steps below to process the interrupt:

Step 1 Configure the interrupt enable bit of the corresponding spinlock in
SPINLOCK_IRQ_EN_REG to enable the interrupt.

Step 2 The spinlock generates an interrupt when its status converts from the locked status to
the unlocked status, and the corresponding bit of the SPINLOCK_IRQ_STA_REG turns to
1.

Step 3 Execute the interrupt handle function and clear the pending bit.

2.13.4.3 Taking/Freeing Spinlock

Take the synchronization between CPUX and RISCV with Spinlock0 as an example, the CPUX and
RISCV perform the following steps.

Figure 2-40 CPUX and RISCV Taking/Freeing Spinlock0 Process

CPUX:

a) The CPUX initializes Spinlock.

b) Check lock register0 (SPINLOCK_STATUS_REG0) status. If it is taken, check until CPUX frees
spinlock0 and then request to take spinlock0. Otherwise, retry until the lock register0 is
taken.

c) Execute CPUX critical code.

d) After executing CPUX critical code, the CPUX frees spinlock0.

The CPUX waits for RISCV to free spinlock0.

RISCV:

a) If the CPUX has taken spinlock0, the RISCV waits for CPUX to free spinlock0.

b) The RISCV requests to take spinlock0. If it fails, retry until the lock register0 is taken.

c) Execute RISCV critical code.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 433

d) After executing RISCV critical code, the RISCV frees spinlock0.

The following codes are for reference.

---CPUX---

Step 1 CPUX initializes Spinlock

put_wvalue(SPINLOCK_BGR_REG,0x00010000);

put_wvalue(SPINLOCK_BGR_REG,0x00010001);

Step 2 CPUX requests to take spinlock0

rdata=readl(SPINLOCK_STATUS_REG0); //Check lock register0 status

if (rdata != 0) writel (0, SPINLOCK_LOCK_REG0); //If it is taken, check till CPUX frees spinlock0

rdata=readl(SPINLOCK_LOCK_REG0); //Request to take spinlock0

if (rdata != 0) rdata=readl(SPINLOCK_LOCK_REG0); //If it fails, retry till lock register0 is
taken

---------- CPUX critical code section ----------

Step 3 CPUX frees spinlock0

writel (0, SPINLOCK_LOCK_REG0); //CPUX frees spinlock0

Step 4 CPUX waits for RISCV’ freeing spinlock0

writel(readl(SPINLOCK_STATUS_REG0) == 1); //CPUX waits for RISCV’ freeing spinlock0

--RISCV---

Step 1 CPUX has taken spinlock0, RISCV waits for CPUX’ freeing spinlock0

while(readl(SPINLOCK_STATUS_REG0) == 1); //RISCV waits for CPUX’ freeing spinlock0

Step 2 RISCV takes spinlock0 and go on

rdata=readl(SPINLOCK_LOCK_REG0); //Request to take spinlock0

if (rdata != 0) rdata=readl(SPINLOCK_LOCK_REG0); //If it fails, retry till lock register0 is
taken

---------- RISCV critical code section ----------

Step 3 RISCV frees spinlock0

writel (0, SPINLOCK_LOCK_REG0); //RISCV frees spinlock0

2.13.5 Register List

Module Name Base Address
SPINLOCK 0x03005000
S_SPINLOCK 0x07093000

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 434

Register Name Offset Description
SPINLOCK_SYSTATUS_REG 0x0000 Spinlock System Status Register
SPINLOCK_STATUS_REG 0x0010 Spinlock Status Register
SPINLOCK_IRQ_EN_REG 0x0020 Spinlock Interrupt Enable Register
SPINLOCK_IRQ_STA_REG 0x0040 Spinlock Interrupt Status Register
SPINLOCK_LOCKID0_REG 0x0080 Spinlock Lockid0 Register
SPINLOCK_LOCKID1_REG 0x0084 Spinlock Lockid1 Register
SPINLOCK_LOCKID2_REG 0x0088 Spinlock Lockid2 Register
SPINLOCK_LOCKID3_REG 0x008C Spinlock Lockid3 Register
SPINLOCK_LOCKID4_REG 0x0090 Spinlock Lockid4 Register
SPINLOCK_LOCK_REGN 0x0100 + N*0x0004 Spinlock Register N (N = 0 to 31)

2.13.6 Register Description

2.13.6.1 0x0000 Spinlock System Status Register (Default Value: 0x1000_0000)

Offset: 0x0000 Register Name: SPINLOCK_SYSTATUS_REG

Bit Read/Write Default/Hex Description
31:30 / / /

29:28 R 0x1

LOCKS_NUM
Number of lock registers implemented
00: This instance has 256 lock registers
01: This instance has 32 lock registers
10: This instance has 64 lock registers
11: This instance has 128 lock registers

27:9 / / /

8 R 0x0

IU0
In-Use flag0, covering lock register0-31
0: All lock registers 0-31 are in the NotTaken state.
1: At least one of the lock register 0-31 is in the Taken
state.

7:0 / / /

2.13.6.2 0x0010 Spinlock Register Status Register (Default Value: 0x0000_0000)

Offset: 0x0010 Register Name: SPINLOCK_STATUS_REG

Bit Read/Write Default/Hex Description

31:0 R 0x0
LOCK_REG_STATUS
SpinLock[i] status
0: The Spinlock is free

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 435

Offset: 0x0010 Register Name: SPINLOCK_STATUS_REG

Bit Read/Write Default/Hex Description
1: The Spinlock is taken

2.13.6.3 0x0020 Spinlock Interrupt Enable Register (Default Value: 0x0000_0000)

Offset: 0x0020 Register Name: SPINLOCK_IRQ_EN_REG

Bit Read/Write Default/Hex Description

31:0 R/W 0x0

LOCK_IRQ_EN
SpinLock[i] interrupt enable
0: Disable
1: Enable

2.13.6.4 0x0040 Spinlock Interrupt Status Register (Default Value: 0x0000_0000)

Offset: 0x0040 Register Name: SPINLOCK_IRQ_STA_REG

Bit Read/Write Default/Hex Description

31:0 R/W1C 0x0

LOCK_IRQ_STATUS
SpinLock[i] interrupt status
0: No effect
1: Pending
Writing 1 clears this bit.

2.13.6.5 0x0080 Spinlock Lockid0 Register (Default Value: 0x7777_7777)

Offset: 0x0080 Register Name: SPINLOCK_LOCKIN0_REG

Bit Read/Write Default/Hex Description
31:0 R 0x77777777 LOCKID0

2.13.6.6 0x0084 Spinlock Lockid1 Register (Default Value: 0x7777_7777)

Offset: 0x0084 Register Name: SPINLOCK_LOCKIN1_REG

Bit Read/Write Default/Hex Description
31:0 R 0x77777777 LOCKID1

2.13.6.7 0x0088 Spinlock Lockid2 Register (Default Value: 0x7777_7777)

Offset: 0x0088 Register Name: SPINLOCK_LOCKIN2_REG

Bit Read/Write Default/Hex Description
31:0 R 0x77777777 LOCKID2

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 436

2.13.6.8 0x008C Spinlock Lockid3 Register (Default Value: 0x7777_7777)

Offset: 0x008C Register Name: SPINLOCK_LOCKIN3_REG

Bit Read/Write Default/Hex Description
31:0 R 0x77777777 LOCKID3

2.13.6.9 0x0090 Spinlock Lockid4 Register (Default Value: 0x7777_7777)

Offset: 0x0090 Register Name: SPINLOCK_LOCKIN4_REG

Bit Read/Write Default/Hex Description
31:0 R 0x77777777 LOCKID4

2.13.6.10 0x0100 + N*0x04 Spinlock Register N (N = 0 to 31) (Default Value: 0x0000_0000)

Offset: 0x0100 + N*0x0004 (N = 0 to 31) Register Name: SPINLOCKN_LOCK_REG

Bit Read/Write Default/Hex Description
31:1 / / /

0 R/W 0x0

TAKEN
Lock State
Read 0x0: The lock was previously Not Taken
(free). The requester is granted the lock.
Write 0x0: Set the lock to Not Taken (free).
Read 0x1: The lock was previously Taken. The
requester is not granted the lock andmust retry.
Write 0x1: No update to the lock value.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 437

2.14 Thermal Sensor Controller (THS)

2.14.1 Overview

The thermal sensors are common elements in wide range of modern system on chips (SoCs)
platform. The thermal sensors are used to constantly monitor the temperature on the chip.

The thermal sensor controller (THS) embeds four thermal sensors. TSENSOR0 is located in the
'big' cores of CPUX; TSENSOR1 is located in the 'LITTLE' cores of CPUX; TSENSOR2 is located in
the GPU; TSENSOR4 is located in the DDR. When the temperature reaches a certain thermal
threshold, the thermal sensor can generate interrupts to the software to lower the temperature
via the dynamic voltage and frequency scaling (DVFS) technology.

The THS has the following features:

 Two THS controllers

- THS0, including TSENSOR4

- THS1, including TSENSOR0, TSENSOR1, and TSENSOR2

 Temperature accuracy: ± 5°C from -40°C to 60°C, ±3°C from -60°C to +125°C

 Averaging filter for thermal sensor reading

 Supports over-temperature protection interrupt and over-temperature alarm interrupt

2.14.2 Block Diagram

The following figures show the block diagrams of the THS0 and THS1.

Figure 2-41 THS0 Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 438

Figure 2-42 THS1 Block Diagram

2.14.3 Functional Description

2.14.3.1 Clock Source

Both of THS0 and THS1 get two clock sources: DCXO24M and PCLK. For details about clock
configurations, refer to section 2.5 Clock Controller Unit (CCU).

2.14.3.2 Timing Requirements

The following figure shows the timing requirements for the THSmodule.

Figure 2-43 Thermal Sensor Timing Requirement

CLK_IN = 24 MHz

CONV_TIME (Conversion Time) = 1/24 MHz x 14 Cycles = 0.583 us

TACQ > 1/24 MHz x 24 Cycles

THERMAL_PER > ADC_Sample_Frequency > TACQ + CONV_TIME

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 439

2.14.3.3 Interrupts

The THS module has four interrupt sources: DATA_IRQ, SHUTDOWN_IRQ, ALARM_IRQ, and
ALARM_OFF_IRQ. The following figure shows thermal sensor interrupt sources.

Figure 2-44 Thermal Sensor Controller Interrupt Source

DATA_IRQ

The interrupt is generated when the measured sensor_data is updated.

SHUTDOWN_IRQ

The interrupt is generated when the temperature is higher than the shutdown threshold.

ALARM_IRQ

The interrupt is generated when the temperature is higher than the Alarm_Threshold.

ALARM_OFF_IRQ

The interrupt is generated when the temperature drops to lower than the Alarm_Off_Thershold.
It is triggered at the fall edge.

2.14.3.4 THS Temperature Conversion Formula

-40°C to +55°C: T=(sensor_data-2736)/(-13.54)

+55°C to 125°C: T= (sensor_data-2825)/(-15.33)

Unit of T: Celsius degree (°C).

The sensor_data is read from the sensor data register.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 440

2.14.4 Programming Guidelines

The initial process of the THS is as follows.

Figure 2-45 THS Initial Process

In the final test (FT) stage, the THS is calibrated through the ambient temperature, and the
calibration value is written in the SID module. The following table shows the THS0 and THS1
information in the SID.

Table 2-21 THS Information in the SID

eFuse Name Base Address Bit Description

T-sensor
Calibration

0x3B-0x3F
(72 bits)

35-24 The calibration value of TSENSOR0
23-12 The calibration value of TSENSOR1
11-0 ROOM

0x44-0x48
(72 bits)

35-24 The calibration value of TSENSOR4
11-0 The calibration value of TSENSOR2

Before enabling THS, read eFuse value and write the value to TSENSORn_CDATA (n=0, 1, 2, or 4).

Query Mode

The following takes THS0 as an example, THS0 and THS1 are the same.

Step 1 Write 0x1 to the bit [16] of THS_BGR_REG to dessert the reset.

Step 2 Write 0x1 to the bit [0] of THS_BGR_REG to open the THS clock.

Step 3 Write 0x2F to the bit [15:0] of THS0_CTRL to set the ADC acquire time.

Step 4 Write 0x1DF to the bit [31:16] of THS0_CTRL to set the ADC sample frequency divider.

Step 5 Write 0x3A to the bit [31:12] of THS0_PER to set the THS work period.

Step 6 Write 0x1 to the bit [2] of THS0_FILTER to enable the temperature convert filter.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 441

Step 7 Write 0x1 to the bit [1:0] of THS0_FILTER to select the filter type.

Step 8 Read THS eFuse value from SID, then write the eFuse value to TSENSOR4_CDATA to
calibrate THS.

Step 9 Write 0x1 to the bit [0] 0f THS0_EN to enable THS.

Step 10 Read the bit [0] of THS0_DATA_INTS. If it is 1, the temperature conversion is complete.

Step 11 Read the bit [11:0] of TSENSOR4_DATA, and calculate the THS temperature based on
section 2.14.3.4 THS Temperature Conversion Formula.

Interrupt Mode

The following takes THS0 as an example, THS0 and THS1 are the same.

Step 1 Write 0x1 to the bit16 of THS_BGR_REG to dessert the reset.

Step 2 Write 0x1 to the bit0 of THS_BGR_REG to open the THS clock.

Step 3 Write 0x2F to the bit [15:0] of THS0_CTRL to set the ADC acquire time.

Step 4 Write 0x1DF to the bit [31:16] of THS0_CTRL to set the ADC sample frequency divider.

Step 5 Write 0x3A to the bit [31:12] of THS0_PER to set the THS work period.

Step 6 Write 0x1 to the bit2 of THS0_FILTER to enable the temperature convert filter.

Step 7 Write 0x1 to the bit [1:0] of THS0_FILTER to select the filter type.

Step 8 Read THS eFuse value from SID, and then write the eFuse value to TSENSOR4_CDATA to
calibrate THS.

Step 9 Write 0x1 to the bit [0] of THS0_DATA_INTC to enable the interrupt of THS.

Step 10 Set GIC interface based on IRQ 71.

Step 11 Put the interrupt handler address into the interrupt vector table.

Step 12 Write 0x1 to the bit [0] 0f THS0_EN to enable THS.

Step 13 Read the bit [0] of THS0_DATA_INTS. If it is 1, the temperature conversion is complete.

Step 14 Read the bit [11:0] of TSENSOR4_DATA, and calculate the THS temperature based on
section 2.14.3.4 THS Temperature Conversion Formula

2.14.5 Register List

THS module includes two groups of registers:

Module Name Base Address
THS0 0x0200_A000
THS1 0x0200_9400

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 455

2.15 Timer

2.15.1 Overview

The Timer module implements the timing and counting functions, which includes CPUX_TIMER,
CPUS_TIMER, and MCU_TIMER. There are 6 timers in TIMER, 3 timers in CPUS_TIMER, and 6
timers in MCU_TIMER.

The Timer module has the following features:

 The AHB port is used to configure the timer register

 Configurable count clock: PRCM/CCU can be switched to 32 kHz, 24 MHz, 16 MHz, and 200
MHz

 Programmable 56-bit down timer

 Supports two timing modes: periodic mode and single counting mode

 Generates an interrupt when the count is decreased to 0

2.15.2 Block Diagram

The timer is a 56-bit down counter. The counter value is decremented by 1 on each rising edge of
the timer clock.

The following figure shows t NIhe block diagram for the timer.

Figure 2-46 Block Diagram for the Timer

NOTE

timer0 is used for illustration here. Block diagrams for other timers are the same.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 456

2.15.3 Functional Descriptions

2.15.3.1 Typical Application

The following figure shows the typical application of the Timer module.

Figure 2-47 Timer Typical Application

The Timer is mounted at the AHB bus. The system configures and controls the Timer via the AHB
bus.

2.15.3.2 Formula for Calculating the Timer Time

The following formula describes the relationship among timer parameters.

clk_timerf
TIMER_CVL},{TIMER_CVH-TIMER_IVL},{TIMER_IVH

T

Where,

TIMER_IVH=the higher 24 bits of the interval value, which could be configured by the lower 24
bits of the TIMER_IVH_REG register;

TIMER_IVL=the lower 32 bits of the interval value, which could be configured by the
TIMER_IVL_REG register;

TIMER_CVH=the higher 24 bits of the current value, which could be configured by the lower 24
bits of the TIMER_CVH_REG register;

TIMER_CVL=the lower 32 bits of the current value, which could be configured by the
TIMER_CVL_REG register;

fclk_timer=the frequency of the timer clock source;

{TIMER_IVH, TIMER_IVL} = 56-bit interval value of the timer;

{TIMER_CVH, TIMER_CVL} = 56-bit current value of the timer.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 457

2.15.3.3 Timing Modes

The timer has two timing modes: the single counting mode and the periodic mode. You can
configure the timing mode via the bit[7] of TIMER_CTRL_REG. The value 0 is for the period mode
and value 1 is for the single counting mode.

 Single Counting Mode

In the single counting mode, the timer starts counting from the interval value and generates an
interrupt after the counter decreases to 0, and then stops counting. It starts to count again only
when the interval value is reloaded.

 Periodic Mode

In the periodic mode, the timer restarts another round of counting after generating the interrupt.
It reloads data from the Timer Interval Value and then continues to count.

2.15.4 Programming Guidelines

2.15.4.1 Initializing the Timer

Refer to the following steps to initialize the timer:

Step 1 Configure the timer parameters including the clock source and timing mode by writing
TIMER_CTRL_REG. There is no sequence requirement of configuring these parameters.

Step 2 Write the interval value.

a) Write TIMER_IVL bit of TIMER_IVL_REG register and TIMER_IVH bit of
TIMER_IVH_REG register to configure the interval value for the timer.

b) Write bit [1] of TIMER_CTRL_REG to load the interval value to the timer. The value of
the bit will be cleared automatically after the interval value is loaded.

Step 3 Write bit [0] of TIMER_CTRL_REG to start the timer. Read TIMER_CVL bit of
TIMER_CVL_REG register and TIMER_CVH bit of TIMER_CVH_REG register to get the
current value of the timer.

NOTE

When performing read or write operations on the current register, operate TIMER_CVL_REG
register before TIMER_CVH_REG register.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 458

2.15.4.2 Processing the Interrupt

Refer to the following steps to process the interrupt:

Step 1 Enable interrupts for the timer: write the enable bit of the corresponding interrupt in
TIMER_IRQ_REG for the timer. The timer will generate an interrupt once the count value
reaches 0.

Step 2 After the software program enters the interrupt process, write the pending bit of the
corresponding interrupt in TIMER_STA_REG to clear the interrupt pending.

Step 3 Resume the interrupt and continue to execute the interrupted process.

2.15.5 Register List

Module Name Base Address The value of N
CPUX_TIMER 0x0300 8000 0-5
CPUS_TIMER 0x0709 0400 0-2
MCU_TIMER 0x0712 3000 0-5

Register Name Offset Description
TIMER_IRQ_REG 0x0000 Timer IRQ Enable Register
TIMER_STA_REG 0x0004 Timer Status Register
TIMER_SEC_REG 0x0008 Timer Secure Register
TIMER_CTRL_REG 0x0020+0x0020*N Timer Control Register
TIMER_IVL_REG 0x0024+0x0020*N Timer Interval Value bit[31:0] Register
TIMER_CVL_REG 0x0028+0x0020*N Timer Current Value [31:0]bit Register
TIMER_IVH_REG 0x002C+0x0020*N Timer Interval Value bit[55:32] Register
TIMER_CVH_REG 0x0030+0x0020*N Timer Current Value [55:32]bit Register

2.15.6 Register Description

2.15.6.1 0x0000 Timer IRQ Enable Register (Default: 0x0000_0000)

Offset: 0x0000 Register Name: TIMER_IRQ_REG

Bit Read/Write Default/Hex Description
31:NUM / / /

NUM-1:0 R/W 0x0
Timer (0-NUM-1) Interrupt Enable
1: Enable
0: Disable

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 462

2.16 Watchdog Timer (WDT)

2.16.1 Overview

Watchdog is used to transmit a reset signal to reset the entire system after an exception occurs in
the system. It has the following features:

 Three watchdog timers: CPUX_WDT in CPUX domain, CPUS_WDT and RISCV_WDT in CPUS
domain

 12 initial values to configure

 Generation of timeout interrupts

 Generation of reset signal

 Watchdog restart the timing

2.16.2 Block Diagram

The following figure shows the functional block diagram of the watchdog module.

Figure 2-48 Watchdog Block Diagram

2.16.3 Functional Descriptions

2.16.3.1 Clock Sources

The clock source of the watchdog is either LOSC (32 kHz) or HOSC/750 (24 MHz/750). Configure
the bit [8] of the WDT_CFG_REG to select a clock source.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 463

2.16.3.2 Typical Application

Figure 2-49 Watchdog Application Diagram

Watchdog configures register by APB bus.

The system configures the time of watchdog, if the system has no timing for restart watchdog
(such as bus hang dead), then watchdog sends out watchdog reset external signal to reset
system; meanwhile watchdog outputs signal to RESET pad to reset PMIC.

2.16.3.3 Operating Modes

The watchdog is a 32-bit down counter, the counter value is decreased by 1 on each rising edge
of the count clock. The watchdog has two operating modes.

 Interrupt mode

The bit [1:0] of the WDT_CFG_REG is set to 0x2, when the counter value reaches 0 and the bit [0]
of the WDT_IRQ_EN_REG is written to 1, the watchdog generates an interrupt, the watchdog
enters into interrupt mode.

 Reset mode

The bit [1:0] of the WDT_CFG_REG is set to 0x1, when the counter value reaches 0, the watchdog
generates a reset signal to reset the entire system.

2.16.4 Programming Guidelines

2.16.4.1 Initializing theWatchdog

Follow the steps below to initialize the watchdog:

Step 1 Configure the bit [1:0] of the WDT_CFG_REG to configure the generation of the
interrupts or the output of reset signal.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 464

Step 2 Configure the bit [7:4] of the WDT_MODE_REG to configure the initial count value.

Step 3 Write the bit [0] of the WDT_MODE_REG to 1 to enable the watchdog.

2.16.4.2 Processing the Interrupt

Follow the steps below to process the interrupt:

Step 1 Write the bit [0] of the WDT_IRQ_EN_REG to 1 to enable the interrupt.

Step 2 After enter the interrupt process, write the bit [0] of the WDT_IRQ_STAT to 1 to clear the
interrupt pending, and execute the process of waiting for the interrupt.

Step 3 Resume the interrupt and continue to execute the interrupted process.

2.16.4.3 Resetting theWatchdog

In the following instance making configurations for WDT: configure clock source as HOSC/750,
configure Interval Value as 1s and configure Watchdog Configuration as to whole system. This
instance indicates that reset system after 1s.

writel (0x16AA_0001, WDT_CFG_REG); //To whole system

writel (0x16AA_0010, WDT_MODE_REG); //Interval Value set 1s

writel(readl(WDT_MODE_REG) |(1<<0)l(0x16AA<<16), WDT_MODE_REG); //Enable WDT

2.16.4.4 Restarting theWatchdog

In the following instance making configurations for WDT: configure clock source as HOSC/750,
configure Interval Value as 1s and configure Watchdog Configuration as to whole system. In the
following instance, if the time of other codes is larger than 1s, watchdog will reset the whole
system. If the sentence of restart watchdog is implemented inside 1s, watchdog will be restarted.

write (0x16AA_0001, WDT_CFG_REG); //To whole system

write (0x16AA_0010, WDT_MODE_REG); //Interval Value set 1s

writel(readl(WDT_MODE_REG) |(1<<0)l(0x16AA<<16), WDT_MODE_REG); //Enable WDT

----other codes---

writel(readl(WDT_CTRL_REG) |(0xA57<<1) | (1<<0), WDT_CTRL_REG); //Write 0xA57 at Key Field
and Restart WDT

2.16.5 Register List

Module Name Base Address
CPUX_WDT 0x0205 0000
CPUS_WDT 0x0702 0400
RISCV_WDT 0x0713 2000

