
Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 472

3 Memory

3.1 RAW NAND Flash Controller (NDFC)
The NDFC is the NAND flash controller which supports all NAND flash memory available in the
market. New types of flash can be supported by software re-configuration.

The NDFC has a built-in on-the-fly error correction code (ECC) feature with BCH algorithm to
enhance the reliability. It can detect and correct up to 80 bits’ error per 1024 bytes’ data. With the
on-chip BCH code ECC circuit, the CPU is freed for other tasks. You can disable the ECC feature by
software.

The NDFC supports transferring data via the DMA or CPU memory-mapped IO. It provides
automatic timing control for reading or writing external Flash and maintains the proper relativity
for CLE, CE#, and ALE control signal lines. There are three modes for serial read access: the
mode0 is for conventional serial access, the mode1 is for EDO type, and the mode2 is for
extension EDO type. The NDFC canmonitor the status of the R/B# signal line.

Block management and wear leveling management are implemented in software.

The NDFC has the following features:

 Supports all SLC/MLC flash and EF-NAND memory available in the market

 Supports configuring randomize seed by software

 Software configuration method for various systems andmemory types

 Up to 8-bit data bus width

 Supports 2CE/2RB

 Supports 1024, 2048, 4096, 8192, 16384, and 32768 bytes’ size per page

 Conventional and EDO serial access method for serial reading Flash

 80 bits/1 KB on-the-fly BCH code ECC check and error correction

 Output bits’ number information about the corrected errors

 ECC automatic disable function for all 0xff data

 NDFC status information is reported by its registers, and interrupt is supported

 One command FIFO

 Two 256x32-bit RAM for Pipeline Procession

 Supports SDR, ONFI DDR1.0, Toggle DDR1.0, ONFI DDR2.0, and Toggle DDR2.0 RAW NAND
FLASH

 Maximum IO rate of 50 MHz in SDR mode, 100 MHz in DDR1.0 and 150MHz in DDR2.0 mode

 Self-debug for NDFC debug



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 473

3.2 SDRAM controller (DRAMC)
The DRAMC has the following features:

 32-bit DDR3/DDR3L/DDR4/LPDDR3/LPDDR4/LPDDR4X interface

 Memory capacity up to 4GB

 Clock frequency up to 1066 MHz for DDR3, DDR3L, and LPDDR3

 Clock frequency up to 1200 MHz for DDR4, LPDDR4, and LPDDR4x

 17 address lines and three bank address lines per channel

 Generate initialization and refresh sequences automatically

 Runtime-configurable parameters setting for application flexibility

 Programmable priority of transferring through multiple ports

 Supports random reading or writing

 Supports Dynamic Frequency Setting(DFS) via hardware

 Supports SSC



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 474

3.3 SD/MMC Host Controller (SMHC)

3.3.1 Overview

The SMHC controls the read/write operations on the secure digital (SD) cards, multimedia cards
(MMC), and various extended devices that is based on the secure digital input/output (SDIO)
protocol. The processor provides three SMHC interfaces for controlling the SD cards, MMCs, and
SDIO devices.

The SMHC has the following features:

 Three SD/MMC host controller (SMHC) interfaces

- SMHC0, compliant with the protocol Secure Digital Memory (SD3.0)

- SMHC1, compliant with the protocol Secure Digital I/O (SDIO3.0)

- SMHC2, compliant with the protocol Multimedia Card (eMMC5.1)

- Supports one SD (Verson1.0 to 3.0) or MMC (Verson3.3 to 5.1)

 The SMHC0 and the SMHC1 support the following:

- 1-bit or 4-bit data width

- Maximum performance:

 SDR mode 200 MHz@1.8 V IO pad

 DDRmode 50 MHz@1.8 V IO pad

 SDR mode 50 MHz@3.3 V IO pad

 The SMHC2 supports the following:

- 1-bit, 4-bit, or 8-bit data width

- Supports HS400mode and HS200mode

- Maximum performance

 SDR mode 200MHz@1.8V IO pad

 DDRmode 200MHz@1.8V IO pad

 SDR mode 50MHz@3.3V IO pad

 DDRmode 50MHz@3.3V IO pad

 Support block size of 1 to 65535 bytes

 Support hardware CRC generation and error detection

 Supports eMMC boot operation and alternative boot operation

 Supports command queue for eMMC V5.1 device

 Supports serial CMDQmode for SMHC0/2

 Supports host pull-up control



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 475

 Supports Command Completion signals and interrupts to host processor, and Command
Completion signal disable feature

 Programmable baud rate

 Descriptor-based internal DMA controller

 Internal time-multiplexing 1 KB FIFO for SMHC0/2 transmitting and receiving

 Internal time-multiplexing 4 KB FIFO for SMHC1 transmitting and receiving

3.3.2 Block Diagram

The following figure shows a block diagram of the SMHC.

Figure 3-1 SMHC Block Diagram

SMHC contains the following sub-blocks:

Table 3-1 SMHC Sub-blocks

Sub-block Description

Register
Used to configure the control signal for reading or writing the
SD/SDIO/eMMC.

DMAC
The DMA controller that controls the data transfer between the
memory and SMHC.

FIFO
A buffer for the data stream between the memory and the SMHC
asynchronous clock domain.

SYNC
Synchronizes the signals from the AHB clock domain to the SMHC
clock domain.

CMD Path
Sends commands to or receives commands from the
SD/SDIO/eMMC.

Data Path
Consists of Data TX and Data RX sub-modules. The Data TX sends
data blocks and the CRC codes to the SD/SDIO/eMMC. The Data RX
receives data blocks and the CRC codes from the SD/SDIO/eMMC.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 476

3.3.3 Functional Description

3.3.3.1 External Signals

The following table describes the external signals of SMHC.

Table 3-2 SMHC External Signals

Signal Name Description Type
SMHC0
SDC0-CMD Command Signal for SD Card I/O, OD
SDC0-CLK Clock for SD Card O
SDC0-D[3:0] DATA INPUT AND OUTPUT FOR SD CARD I/O
SMHC1
SDC1-CMD Command Signal for SDIO WIFI I/O, OD
SDC1-CLK Clock for SDIO WIFI O
SDC1-D[3:0] Data Input and Output for SDIO WIFI I/O
SMHC2
SDC2-CMD Command Signal for eMMC I/O, OD
SDC2-CLK Clock for eMMC O
SDC2-D[8:0] Data Input and Output for eMMC I/O
SDC2-RST Reset for eMMC O
SDC2-DS Clock input for eMMC I

3.3.3.2 Clock Sources

The SMHC0/1/2 has 5 different clock sources. You can select one of them as the SMHC clock
source. The following table describes the clock sources of the SMHC.

For clock setting, configurations, and gating information, refer to section 2.5 Clock Controller
Unit (CCU).

Table 3-3 SMHC0/1 Clock Sources

Clock Sources Description Module
HOSC 24 MHz Crystal

CCU
PLL_PERI0(400M) Peripheral Clock, the default value is 400 MHz
PLL_PERI0(300M) Peripheral Clock, the default value is 300 MHz
PLL_PERI1(400M) Peripheral Clock, the default value is 400 MHz
PLL_PERI1(300M) Peripheral Clock, the default value is 300 MHz

Table 3-4 SMHC2 Clock Sources

Clock Sources Description Module
HOSC 24 MHz Crystal

CCUPLL_PERI0(800M) Peripheral Clock, the default value is 800 MHz
PLL_PERI0(600M) Peripheral Clock, the default value is 600 MHz



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 477

Clock Sources Description Module
PLL_PERI1(800M) Peripheral Clock, the default value is 800 MHz
PLL_PERI1(600M) Peripheral Clock, the default value is 600 MHz

3.3.3.3 Timing Diagram

Refer to the following relative specifications:

 Physical Layer Specification Ver3.00 Final

 SDIO Specification Ver2.00

 Multimedia Cards (MMC – version 4.2)

 JEDEC Standard – JESD84-44, Embedded Multimedia Card (eMMC) Card Product Standard

 JEDEC Standard – JESD84-B45, Embedded Multimedia Card (eMMC) Electrical Standard (4.5
Device)

 JEDEC Standard – JESD84-B50, Embedded Multimedia Card (eMMC) Electrical Standard (5.0)

3.3.3.4 Data Path

The SMHC and SD/SDIO/eMMC contains the following interface buses: CLK, CMD, and DATA 1/4.
During one clock cycle, the SMHC can transmit one-bit command with one or two bits’ data in
1-ch DATA mode, or four or eight bits’ data in 4-ch DATA mode. The CMD is a bidirection channel
for initializing the SD/SDIO/eMMC and transmitting commands. It can work in both the
open-drain mode and push-pull mode. The DATA is also a bidirection channel. It works in the
push-pull mode.

 Reading Data from the SD/SDIO/eMMC

The register configures the signals for the read operation, and synchronize the signals to the
SMHC clock domain. Then the Data RX reads data from the SD/SDIO/eMMC via the
CLK/CMD/DATA interface buses and writes the data in the FIFO. After that, the DMAC transfers the
data from the FIFO to the memory.

 Writing Data to the SD/SDIO/eMMC

The register configures the signals for the write operation, and synchronize the signals to the
SMHC clock domain. Then the DMAC reads data from the memory and writes the data to the FIFO.
After that, the Data TX reads the data from the FIFO and writes the data to the SD/SDIO/eMMC via
the CLK/CMD/DATA interface buses.

3.3.3.5 Package Format

Data transfer over the SD/eMMC bus is based on command and data bitstreams that are initiated
by a start bit and terminated by a stop bit. There are three types of SD/eMMC packets: command
token, response token, and data packet.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 478

Command Tokens

The command token starts an operation. A command is sent from the host to a device. It is
transferred serially on the CMD line. Command tokens have the following coding scheme:

Figure 3-2 Command Token Format

Each command token has 48 bits, preceded by a start bit (‘0’) and succeeded by an end bit (‘1‘).
To detect transmission errors, each token is protected by CRC bits.

Response Tokens

After receiving a command, the card returns a 48-bit or 136-bit response based on the command
type.

A response token is sent from the device to the host as an answer to a previously received
command. It is transferred serially on the CMD line.

Figure 3-3 Response Token Format

Data Packet

Data can be transferred from the device to the host or vice versa. Data are transferred via the
data lines.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 479

Figure 3-4 Data Packet Format for SDR



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 480

Figure 3-5 Data Packet Format for DDR



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 481

NOTE

 Bytes data are not interleaved but CRCs are interleaved.

 Start and end bits are only valid on the rising edge (“X” indicates “undefined”).

Figure 3-6 Data Packet Format for DDR in HS400 Mode

NOTE

 Bytes data are not interleaved but CRCs are interleaved.

 Start bits are valid when Data Strobe is High and Low.

 End bits are only valid when Data Strobe is High (“X” indicates “undefined”).

Data Transfer

Data transfers to or from the SD/eMMC card are done in blocks. Single and multiple block
operations are widely used during data transfer.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 482

The following figure shows the single-block andmulti-block read operation.

Figure 3-7 Single-Block and Multi-Block Read Operation

The following figure shows the single-block andmulti-block write operation.

Figure 3-8 Single-Block and Multi-Block Read Operation

3.3.3.6 Phase Offset of the Command and Data

To obtain the command phase or data phase in output timing, follow the steps blow:

Step 1 Configure the MODE_SEL (bit [31]) andor HS400_NEW_SAM_EN (bit [0]) of SMHC_NTSR
(offset: 0x005C) to choose the timing mode.

Step 2 Configure the DAT_DRV_PH_SEL (bit [17]) to select data drive phase offset and
configureor CMD_DRV_PH_SEL (bit [16]) to select command drive phase offset inof
SMHC_DRV_DL (offset: 0x0140) to select data or command drive phase offset.

The following table shows the specific configuration of command and data location.

Table 3-5 Command and Data Location

Timing
Mode

DRV Command Drive Phase offset Data Drive Phase offset



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 483

Timing
Mode

DRV Command Drive Phase offset Data Drive Phase offset

SDR

0

The Command updates at 90
degrees.

The data update at 90 degrees.

1

The Command updates at 180
degrees.

The data updates at 180 degrees.

DDR4
(1x
mode:
0x5c[31
]=0)

0

The Command updates at 90
degrees.

The data update at 90 degrees.

1

The Command updates at 180
degrees.

The data update at 0 or 180 degrees.

DDR4
(2x
mode:
0x5c[31
]=1)

0



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 484

Timing
Mode

DRV Command Drive Phase offset Data Drive Phase offset

The Command updates at 45
degrees.

The data update at 45 degrees.

1

The Command updates at 45
degrees.

The data update at 90 degrees.

DDR8

0

The Command updates at 45
degrees.

The data update at 45 degrees.

1

The Command updates at 90
degrees.

The data update at 90 degrees.

HS400
(1x
mode:
0x5c[0]
=0)

0

The Command updates at 90
degrees.

The data update at 90 degrees.

1

The Command updates at 180
degrees.

The data update at 0 or 180 degrees.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 485

Timing
Mode

DRV Command Drive Phase offset Data Drive Phase offset

HS400
(2x
mode:
0x5c[0]
=1)

0

The Command updates at 90
degrees.

The data update at 45 degrees.

1

The Command updates at 180
degrees.

The data update at 90 degrees.

3.3.3.7 Internal DMA Controller Description

The SMHC has an internal DMA controller (IDMAC) to transfer data between the host memory and
SMHC port. With a descriptor, the IDMAC can efficiently move data from the source to destination
by automatically loading the next DMA transfer arguments, which needs less CPU intervention.
Before transferring data in the IDMAC, the Host CPU should construct a descriptor list, configure
arguments of every DMA transfer, and then launch the descriptor and start the DMA.

The IDMAC has an interrupt controller. When enabled, it generates an interrupt to the Host CPU
in situations such as data transmission is completed or some error is happened.

IDMAC Descriptor Structure

The IDMAC uses a descriptor with a chain structure, and each descriptor points to a unique buffer
and the next descriptor.

The following figure shows the internal formats of a descriptor.

Figure 3-9 IDMAC Descriptor Structure Diagram



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 486

This figure illustrates the internal formats of a descriptor. The descriptor address must be
aligned to the bus width used for 32-bit buses. Each descriptor contains 16 bytes of control and
status information.

DES0 corresponds to the [31:0] bits, DES1 corresponds to the [63:32] bits, DES2 corresponds to
the [95:64] bits, and DES3 corresponds the [127:96] bits in a descriptor.

The following table shows the bit definition of DES0.

Table 3-6 DES0 Definition

Bits Name Description

31 HOLD

DES_OWN_FLAG
When set, this bit indicates that the descriptor is owned by the
IDMAC. When this bit is reset, it indicates that the descriptor is
owned by the host. This bit is cleared when the transfer is over.
Note: After this bit is cleared to 0, the Host CPU is able to read
the transferred data or initiate next transfer by launching a
new descriptor.

30 ERROR
ERR_FLAG
When some errors happen in transfer, this bit will be set to 1.

29:5 / /

4 Chain Flag
CHAIN_MOD
When set to 1, this bit indicates that the second address in the
descriptor is the next descriptor address. It must be set to 1.

3 First DES Flag
FIRST_FLAG
When set to 1, this bit indicates that this descriptor contains
the first buffer of data. It must be set to 1 in the first DES.

2 Last DES Flag
LAST_FLAG
When set to 1, this bit indicates that the buffers this descriptor
points to are the last data buffer.

1
Disable Interrupt
on completion

CUR_TXRX_OVER_INT_DIS
When set to 1, this bit will prevent the setting of the TX/RX
interrupt bit of the IDMAC status register for data that ends in
the buffer the descriptor points to.

0 / /

The following table shows the bit definition of DES1.

Table 3-7 DES1 Definition

Bits Name Description
31:13 / /

12:0 Buffer size

BUFF_SIZE
The bits indicate the data buffer byte size, which must be a
multiple of 4 bytes. If this field is 0, the DMA ignores this buffer
and proceeds to the next descriptor.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 487

The following table shows the bit definition of DES2.

Table 3-8 DES2 Definition

Bits Name Descriptor

31:0
Buffer address
pointer

BUFF_ADDR
The bits indicate the physical address of the data buffer.
It is a word address.

The following table shows the bit definition of DES3.

Table 3-9 DES3 Definition

Bits Name Descriptor

31:0
Next descriptor
address

NEXT_DESP_ADDR
The bits indicate the pointer to the physical memory where the
next descriptor is present.
It is a word address.

3.3.3.8 Calibrating the Delay Chain

There are two delay chains in SMHC: data strobe delay chain and sample delay chain.

 Data strobe delay chain: used to generate delay to make proper timing between Data Strobe
and data signals.

 Sample delay chain: used to generate delay to make proper timing between the internal
card clock signal and data signals.

Each delay chain is made up with 64 delay cells. The delay time of one delay cell can be
estimated through delay chain calibration.

Follow the steps below to calibrate the delay chain:

Step 1 Enable SMHC. In order to calibrate the delay chain by the operation registers in SMHC,
the SMHC must be enabled through SMHC Bus Gating Reset Register and SMHCx Clock
Register(x=0, 1, or 2).

Step 2 Configure a proper clock for SMHC. The delay chain calibration is based on the clock for
SMHC from Clock Control Unit (CCU). The delay chain calibration is an internal function
in SMHC and needs no devices. So it is unnecessary to open the clock signal for devices.
The recommended clock frequency is 200 MHz.

Step 3 Set proper initial delay value. Writing 0xA0 to delay control register enables Delay
Software Enable (bit [7]) and sets initial delay value 0x20 to Delay chain (bit [5:0]). Then
write 0x0 to delay control register to clear the value.

Step 4 Write 0x8000 to delay control register to start calibrating the delay chain.

Step 5 Wait until the flag (bit14 in delay control register) of calibration done is set. The number
of delay cells is shown at bit [13:8] in delay control register. The delay time generated by



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 488

these delay cells is equal to the cycle of the SMHC clock nearly. This value is the result of
calibration.

Step 6 Calculate the delay time of one delay cell according to the cycle of the SMHC clock and
the result of calibration.

3.3.4 Programming Guidelines

3.3.4.1 Initializing SMHC

Before data and commands are exchanged between a card and the SMHC, the SMHC needs to be
initialized. Follow the steps below to initialize the SMHC:

Step 1 Configure the corresponding GPIO register as an SMHC in section 8.5 GPIO; reset clock
by writing 1 to SMHC_BGR_REG[SMHCx_RST](x=0, 1, or 2), and open clock gating by
writing 1 to SMHC_BGR_REG[SMHCx_GATING] (x=0, 1, or 2); select clock sources and set
the division factor by configuring the SMHCx_CLK_REG (x = 0, 1, or 2) register.

Step 2 Configure SMHC_CTRL to reset the FIFO and controller, and enable the global interrupt;
configure SMHC_INTMASK to 0xFFCE to enable normal interrupts and error abnormal
interrupts, and then register the interrupt function.

Step 3 Configure SMHC_CLKDIV to open clock for devices; configure SMHC_CMD as the change
clock command (for example 0x80202000); send the update clock command to deliver
clocks to devices.

Step 4 Configure SMHC_CMD as a normal command. Configure SMHC_CMDARG to set
command parameters. Configure SMHC_CMD to set parameters like whether to send
the response, the response type, and the response length and then send the commands.
According to the initialization process in the protocol, you can finish SMHC initialization
by sending the corresponding command one by one.

3.3.4.2 Writing a Single Data Block

To write a single data block, follow the steps below:

Step 1 Write 0x1 to SMHC_CTRL[DMA_RST] to reset the internal DMA controller; write 0x82 to
SMHC_IDMAC to enable the IDMAC interrupt and configure AHB master burst transfers;
configure SMHC_IDIE to enable the transfer interrupt, receive interrupt, and abnormal
interrupt.

Step 2 Configure SMHC_FIFOTH to determine the burst size and TX/RX trigger level. For
example, if SMHC_FIFOTH is configured as 0x300F00F0, it indicates the burst size is 16,
TX_TL is 15, and RX_TL is 240. Configure SMHC_DLBA to determine the start address of
the DMA descriptor.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 489

Step 3 To write one block data to sector1, configure SMHC_BYTCNT[BYTE_CNT] to 0x200 and
configure the descriptor according to the data size; set the data sector address of
CMD24 (Single Data Block Write) to 0x1, write 0x80002758 to SMHC_CMD, and send
CMD24 command to write data to the device.

Step 4 Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent successfully;
otherwise, continue to wait until timeout, and then exit the process.

Step 5 Check whether SMHC_IDST[TX_INT] is 1. If yes, the data transfer for writing DMA is
completed. Write 0x337 to SMHC_IDST to clear the interrupt flag. Otherwise, continue to
wait until timeout, and then exit the process.

Step 6 Check whether SMHC_RINTSTS[DTC] is 1. If yes, the data transfer and CMD24 writing
operations are completed. Otherwise, abnormity exists. Read SMHC_RINTSTS and
SMHC_STATUS to query the existing abnormity.

Step 7 Send CMD13 command to query whether the device writing operation is completed and
returns to the idle status. For example, device RCA is 0x1234, first set SMHC_CMDARG to
0x12340000, write 0x8000014D to SMHC_CMD, go to step4 to ensure command transfer
completed, and then check whether the highest bit of SMHC_RESP0 (CMD13 response)
is 1. If yes, the device is in the idle status, and the next command can be sent. Otherwise,
the device is in the busy status. Continue to send CMD13 to wait for the device to enter
the idle status until timeout.

3.3.4.3 Reading a Single Data Block

To read a single data block, follow the steps below:

Step 1 Write 0x1 to SMHC_CTRL[DMA_RST] to reset the internal DMA controller; write 0x82 to
SMHC_IDMAC to enable the IDMAC interrupt and configure AHB master burst transfers;
configure SMHC_IDIE to enable the transfer interrupt, receive interrupt, and abnormal
interrupt.

Step 2 Configure SMHC_FIFOTH to determine the burst size and TX/RX trigger level. For
example, if SMHC_FIFOTH is configured as 0x300F00F0, it indicates the burst size is 16,
TX_TL is 15, and RX_TL is 240. Configure SMHC_DLBA to determine the start address of
the DMA descriptor.

Step 3 To read one block data from sector1, configure SMHC_BYTCNT[BYTE_CNT] to 0x200 and
configure the descriptor according to the data size; set the data sector address of
CMD17 command (Single Data Block Read) to 0x1, write 0x80002351 to SMHC_CMD, and
send CMD17 command to read data from the device to DRAM/SRAM.

Step 4 Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent successfully;
otherwise, continue to wait until timeout, and then exit the process.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 490

Step 5 Check whether SMHC_IDST[TX_INT] is 1. If yes, the data transfer for writing DMA is
completed. Write 0x337 to SMHC_IDST to clear the interrupt flag. Otherwise, continue to
wait until timeout, and then exit the process.

Step 6 Check whether SMHC_RINTSTS[DTC] is 1. If yes, data transfer and CMD17 reading
operation are completed. Otherwise, abnormity exists. Read SMHC_RINTSTS and
SMHC_STATUS to query the existing abnormity.

3.3.4.4 Writing Open-Ended Multiple Data Blocks (CMD25 + Auto CMD12)

To write open-ended multiple data blocks, follow the steps below:

Step 1 Write 0x1 to SMHC_CTRL[DMA_RST] to reset the internal DMA controller; write 0x82 to
SMHC_IDMAC to enable the IDMAC interrupt and configure AHB master burst transfers;
configure SMHC_IDIE to enable the transfer interrupt, receive interrupt, and abnormal
interrupt.

Step 2 Configure SMHC_FIFOTH to determine the burst size and TX/RX trigger level. For
example, if SMHC_FIFOTH is configured as 0x300F00F0, it indicates the burst size is 16,
TX_TL is 15, and RX_TL is 240. Configure SMHC_DLBA to determine the start address of
the DMA descriptor.

Step 3 To write three blocks of data to sectors begin with sector0, configure
SMHC_BYTCNT[BYTE_CNT] to 0x600 and configure the descriptor according to the data
size; set the data sector address of CMD25 command (Multiple Data Blocks Write) to 0x0,
write 0x80003759 to SMHC_CMD, and send CMD25 command to read data from the
device to DRAM/SRAM.

Step 4 Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent successfully;
otherwise, continue to wait until timeout, and then exit the process.

Step 5 Check whether SMHC_IDST[TX_INT] is 1. If yes, the data transfer for writing DMA is
completed. Write 0x337 to SMHC_IDST to clear the interrupt flag. Otherwise, continue to
wait until timeout, and then exit the process.

Step 6 Check whether SMHC_RINTSTS[ACD] and SMHC_RINTSTS[DTC] are both 1. If yes, the
data transfer, CMD12 transfer, and CMD25 writing operations are completed. Otherwise,
abnormity exists. Read SMHC_RINTSTS and SMHC_STATUS to query the existing
abnormity.

Step 7 Send CMD13 command to query whether the device writing operation is completed and
returns to the idle status. For example, device RCA is 0x1234, first set SMHC_CMDARG to
0x12340000, write 0x8000014D to SMHC_CMD, go to step4 to ensure command transfer
completed, and then check whether the highest bit of SMHC_RESP0 (CMD13 response)
is 1. If yes, the device is in the idle status, and the next command can be sent. Otherwise,



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 491

the device is in the busy status. Continue to send CMD13 to wait for the device to enter
the idle status until timeout.

3.3.4.5 Reading Open-Ended Multiple Data Blocks (CMD18 + Auto CMD12)

To read open-endedmultiple data blocks, follow the steps below:

Step 1 Write 0x1 to SMHC_CTRL[DMA_RST] to reset the internal DMA controller; write 0x82 to
SMHC_IDMAC to enable the IDMAC interrupt and configure AHB master burst transfers;
configure SMHC_IDIE to enable the transfer interrupt, receive interrupt, and abnormal
interrupt.

Step 2 Configure SMHC_FIFOTH to determine the burst size and TX/RX trigger level. For
example, if SMHC_FIFOTH is configured as 0x300F00F0, it indicates the burst size is 16,
TX_TL is 15, and RX_TL is 240. Configure SMHC_DLBA to determine the start address of
the DMA descriptor.

Step 3 To read three blocks of data from sectors begin with sector0, configure
SMHC_BYTCNT[BYTE_CNT] to 0x600 and configure the descriptor according to the data
size; set the data sector address of CMD18 command (Multiple Data Blocks Read) to 0x0,
write 0x80003352 to SMHC_CMD, and send CMD18 command to read data to the device.
When the data transfer is completed, CMD12 will be sent automatically.

Step 4 Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent successfully;
otherwise, continue to wait until timeout, and then exit the process.

Step 5 Check whether SMHC_IDST[RX_INT] is 1. If yes, the data transfer for writing DMA is
completed. Write 0x337 to SMHC_IDST to clear the interrupt flag. Otherwise, continue to
wait until timeout, and then exit the process.

Step 6 Check whether SMHC_RINTSTS[ACD] and SMHC_RINTSTS[DTC] are both 1. If yes, data
transfer, CMD12 transfer, and CMD18 reading operation are completed. Otherwise,
abnormity exists. Read SMHC_RINTSTS and SMHC_STATUS to query the existing
abnormity.

3.3.4.6 Writing Pre-Defined Multiple Data Blocks (CMD23 + CMD25)

To write pre-defined multiple data blocks, follow the steps below:

Step 1 Write 0x1 to SMHC_CTRL[DMA_RST] to reset the internal DMA controller; write 0x82 to
SMHC_IDMAC to enable the IDMAC interrupt and configure AHB master burst transfers;
configure SMHC_IDIE to enable the transfer interrupt, receive interrupt, and abnormal
interrupt.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 492

Step 2 Configure SMHC_FIFOTH to determine the burst size and TX/RX trigger level. For
example, if SMHC_FIFOTH is configured as 0x300F00F0, it indicates the burst size is 16,
TX_TL is 15, and RX_TL is 240. Configure SMHC_DLBA to determine the start address of
the DMA descriptor.

Step 3 To write three blocks of data, configure SMHC_CMDARG to 0x3 to specify the number of
data blocks as three. Then write 0x80000157 to SMHC_CMD to send the CMD23
command. Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent
successful; otherwise, continue to wait until timeout, and then exit the process.

Step 4 Configure SMHC_BYTCNT[BYTE_CNT] to 0x600 and configure the descriptor according
to the data size; set the data sector address of CMD25 command (Multiple Data Blocks
Write) to 0x0, write 0x80002759 to SMHC_CMD, and send CMD25 command to write data
to the device.

Step 5 Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent successful;
otherwise, continue to wait until timeout, and then exit the process.

Step 6 Check whether SMHC_IDST[TX_INT] is 1. If yes, the data transfer for writing DMA is
completed. Write 0x337 to SMHC_IDST to clear the interrupt flag. Otherwise, continue to
wait until timeout, and then exit the process.

Step 7 Check whether SMHC_RINTSTS[DTC] is 1. If yes, the data transfer and CMD25 writing
operations are completed. Otherwise, abnormity exists. Read SMHC_RINTSTS and
SMHC_STATUS to query the existing abnormity.

Step 8 Send CMD13 command to query whether the device writing operation is completed and
returns to the idle status. For example, device RCA is 0x1234, first set SMHC_CMDARG to
0x12340000, write 0x8000014D to SMHC_CMD, go to step5 to ensure command transfer
completed, and then check whether the highest bit of SMHC_RESP0 (CMD13 response)
is 1. If yes, the device is in the idle status, and the next command can be sent. Otherwise,
the device is in the busy status. Continue to send CMD13 to wait for the device to enter
the idle status until timeout

3.3.4.7 Reading Pre-Defined Multiple Data Blocks (CMD23 + CMD18)

To read pre-defined multiple data blocks, follow the steps below:

Step 1 Write 0x1 to SMHC_CTRL[DMA_RST] to reset the internal DMA controller; write 0x82 to
SMHC_IDMAC to enable the IDMAC interrupt and configure AHB master burst transfers;
configure SMHC_IDIE to enable the transfer interrupt, receive interrupt, and abnormal
interrupt.

Step 2 Configure SMHC_FIFOTH to determine the burst size and TX/RX trigger level. For
example, if SMHC_FIFOTH is configured as 0x300F00F0, it indicates the burst size is 16,



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 493

TX_TL is 15, and RX_TL is 240. Configure SMHC_DLBA to determine the start address of
the DMA descriptor.

Step 3 To read three blocks of data, configure SMHC_CMDARG to 0x3 to specify the number of
data blocks as three. Then write 0x80000157 to SMHC_CMD to send the CMD23
command. Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent
successful; otherwise, continue to wait until timeout, and then exit the process.

Step 4 Configure SMHC_BYTCNT[BYTE_CNT] to 0x600 and configure the descriptor according
to the data size; set the data sector address of CMD18 (Multiple Data Blocks Read) to 0x0,
write 0x80002352 to SMHC_CMD, and send CMD18 command to read data from device
to DRAM/SRAM.

Step 5 Check whether SMHC_RINTSTS[CC] is 1. If yes, the command is sent successful;
otherwise, continue to wait until timeout, and then exit the process.

Step 6 Check whether SMHC_IDST[RX_INT] is 1. If yes, the data transfer for writing DMA is
completed. Write 0x337 to SMHC_IDST to clear the interrupt flag. Otherwise, continue to
wait until timeout, and then exit the process.

Step 7 Check whether SMHC_RINTSTS[DTC] is 1. If yes, the data transfer and CMD18 writing
operations are completed. Otherwise, abnormity exists. Read SMHC_RINTSTS and
SMHC_STATUS to query the existing abnormity.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 494

3.3.4.8 Initializing Command Queue for eMMC V5.1 Device

The following figure describes the initialization process of command queue.

Figure 3-10 Initialization Process of Command Queue

Follow the steps below to initialize the command queue:

Step 1 Initialize the eMMC. For detailed initialization steps, refer to section 3.3.4.1 Initializing
SMHC.

Step 2 Send CMD6 to configure the timing mode and bus width. Send CMD16 to configure the
block size as 512 B.

NOTE

The block size must be set to 512 B. After the command queue is enabled, the block size will not
be able to be modified.

Step 3 Send CMD6 to enable the command queue of the eMMC device.



Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 495

Step 4 Configure CQTDLBA register to set the base address of the task descriptor list.

NOTE

When the base address of the task descriptor list crosses 4 GB, you need to write the bit [32] of
the higher 32-bit address to the bit [0] of the CQTDLBA register and write the lower 32-bit address
to the CQTDLBA register.

For example, assume that the base address is 0x106000000. In this case, you need to write the bit
[32] of the higher 32-bit address to the bit [0] of the CQTDLBA register and write 0x06000001 to
the CQTDLBA register.

Step 5 Configure CQSSC1 register to set how to query the status of the device's task queue.

Step 6 Configure CQIC register to enable/disable interrupt, set interrupt count and timer
protection.

Step 7 Configure CQRMEM register to set which errors may trigger a RED interrupt.

Step 8 Configure CQCFG register to enable CQE activity.

eMMC CMDQ supports multiple operation modes, which could be selected by configuring the
CMDQ_MODE bit (bit [5:4]) of CQCFG register.

3.3.5 Register List

Module Name Base Address Description
SMHC0 0x04020000
SMHC1 0x04021000 SMHC1 register is the same with SMHC0
SMHC2 0x04022000 SMHC2 register is the same with SMHC0

Register Name Offset Description
SMHC_CTRL 0x0000 SMHC Global Control Register
SMHC_CLKDIV 0x0004 SMHC Clock Control Register
SMHC_TMOUT 0x0008 SMHC Timeout Register
SMHC_CTYPE 0x000C SMHC Bus Width Register
SMHC_BLKSIZ 0x0010 SMHC Block Size Register
SMHC_BYTCNT 0x0014 SMHC Byte Count Register
SMHC_CMD 0x0018 SMHC Command Register
SMHC_CMDARG 0x001C SMHC Command Argument Register
SMHC_RESP0 0x0020 SMHC Response 0 Register
SMHC_RESP1 0x0024 SMHC Response 1 Register
SMHC_RESP2 0x0028 SMHC Response 2 Register
SMHC_RESP3 0x002C SMHC Response 3 Register
SMHC_INTMASK 0x0030 SMHC Interrupt Mask Register


