
Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1025

8 Interfaces

8.1 CIR Receiver (CIR_RX)

8.1.1 Overview

The Consumer Infrared (CIR) receiver captures pulse from the IR Receiver module and uses the
Run-Length Code (RLC) to encode the pulse.

The CIR receiver has the following features:

 One CIR_RX interface in CPUX domain and one CIR_RX interface in CPUS domain

 Full physical layer implementation

 Supports NEC format infra data

 Supports CIR for remote control

 64x8 bits FIFO for data buffer

 Sample clock up to 1 MHz

 Supports interrupt and DMAmode

8.1.2 Block Diagram

Figure 8-1 CIR Receiver Block Diagram

The CIR receiver samples the input signal on the programmable frequency and records these
samples into RX FIFO when one CIR signal is found on the air. The CIR receiver uses Run-Length
Code (RLC) to encode pulse width. The encoded data is buffered in 64 levels and 8-bit width RX
FIFO; the MSB bit is used to record the polarity of the receiving CIR signal, the rest 7 bits are used
for the length of RLC. The maximum length of the RLC is 128. If the duration of one level (high or
low level) is more than 128, another byte is used.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1026

8.1.3 Functional Description

8.1.3.1 External Signals

The following table describes the external signals of CIR Receiver.

Table 8-1 CIR Receiver External Signals

Signal Name Description Type
IR-RX Consumer Infrared Receiver I
S-IR-RX Consumer infrared receiver I

8.1.3.2 Clock Sources

The following table describes the clock sources of CIR Receiver.

Table 8-2 CIR Receiver Clock Sources

Clock Sources Description Module
CIR_RX
CLK32K By default, CLK32K is 32.768 kHz. CCU
HOSC By default, HOSC is 24 MHz. CCU
S_CIRRX
CLK32K By default, CLK32K is 32.768 kHz. PRCM
CLK24M By default, CLK24M is 24 MHz. PRCM

8.1.3.3 Typical Application

Figure 8-2 CIR Receiver Application Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1027

8.1.3.4 NEC Protocol Format

Figure 8-3 NEC Protocol

The CIR receiver module is a timer with a capture function.

When CIR_RX signals satisfy the Active Threshold (ATHR), the CIR receiver can start to capture. In
the process, the signal is ignored if the pulse width of the signal is less than NTHR. When CIR_RX
signals satisfy ITHR (Idle Threshold), the capture process is stopped and the Receiver Packet End
interrupt is generated, then the Receiver Packet End Flag is asserted.

In a capture process, every effective pulse is buffered to FIFO in bytes according to the form of
the Run-Length Code. The MSB bit of a byte is the polarity of pulse, and the rest 7 bits is pulse
width by taking Sample Clock as a basic unit. This is the code form of the RLC-Byte. When the
level changes or the pulse width counter overflows, the RLC-Byte is buffered to FIFO. The CIR_RX
module receives the infrared signals transmitted by the infrared remote control, the software
decodes the signals.

8.1.3.5 Operating Mode

Sample Clock

Figure 8-4 Logical ‘0’ and Logical ‘1’ of NEC Protocol

For NEC protocol, a logical "1" takes 2.25 ms (560 us+1680 us) to transmit, while a logical "0" is
only half of that, being 1.12 ms (560 us+560 us).

For example, if the sample clock is 31.25 kHz, a sample cycle is 32 us, then 18 sample cycles are
560 us. So the RLC of 560 us low level is 0x12 (b’00010010), the RLC of 560 us high level is 0x92
(b’10010010). Then a logical “1” takes code 0x12 (b’00010010) and code 0xb5 (b’10110101) to
transmit, a logical “0” takes code 0x12 and code 0x92 to transmit.

Active Threshold (ATHR)

When the CIR receiver is in Idle state, if the electrical level of the IR-RX signal changes (positive
jump or negative jump), and the duration reaches this threshold, then the CIR receiver takes the

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1028

starting of the signal as a lead code, and the CIR receiver turns into an active state and starts to
capture IR-RX signals.

Figure 8-5 ATHR Definition

Idle Threshold (ITHR)

If the electrical level of IR-RX signals has no change, and the duration reaches this threshold,
then the CIR receiver enters into Idle state and ends this capture.

Figure 8-6 ITHR Definition

Noise Threshold (NTHR)

In the capture process, the pulse is ignored if the pulse width is less than the Noise Threshold.

Figure 8-7 NTHR Definition

Active Pulse Accept Mode (APAM)

The APAM is used to fit the type of lead code. If a pulse does not fit the type of lead code, it is not
regarded as a lead code even if the pulse width reaches ATHR.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1029

Figure 8-8 APAM Definition

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1030

8.1.4 Programming Guidelines

Figure 8-9 CIR Receiver Process

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1037

8.2 CIR Transmitter (CIR_TX)

8.2.1 Overview

The CIR transmitter (CIR_TX) can transfer arbitrary waves which can be modulated with
configurable carrier waves such as 38 kHz. CIR_TX only uses lower 8 bits of the 32-bit registers.
CIR_TX stores a 16-bit number in 2 registers, where one register contains the higher 8 bits while
the other contains the lower 8 bits.

The CIR_TX has the following features:

 One CIR_TX interface in CPUX domain

 Supports industry-standard AMBA Peripheral Bus (APB) and it is fully compliant with the
AMBA Specification, Revision 2.0

 Full physical layer implementation

 Arbitrary wave generator

 Configurable carrier frequency

 Handshake mode and waiting mode of DMA

 128 bytes FIFO for data buffer

 Supports Interrupts and DMA

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1038

8.2.2 Block Diagram

The following figure shows a block diagram of the CIR_TX.

Figure 8-10 CIR_TX Block Diagram

8.2.3 Functional Description

8.2.3.1 External Signals

The following table describes the external signals of CIR_TX.

Table 8-3 CIR_TX External Signals

Signal Name Description Type
IR-TX Consumer Infrared Receiver I

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1039

8.2.3.2 Clock Sources

Figure 8-11 CIR_TX Clock Description

8.2.3.3 Function Implementation

The CIR_TX is used to generate a waveform of arbitrary length, arbitrary shape, and no
high-speed requirement, and it can change the data into the high-/low-level sequence of a
certain length. Every transmitting data is in bytes, the Bit[7] of a byte means whether the level of
a transmitting wave is high or low, the Bit[6:0] is the length of this wave. If the current
transmitting frequency-division is 1, 0x88 is a high level of 8 cycles, 0x08 is a low level of 8 cycles.
If the current transmitting frequency-division is 4, 0x88 is a high level of 32 cycles, 0x08 is a low
level of 32 cycles.

The CIR_TX has two transmission modes: non-cycle transmission, and cycle transmission.

The non-cycle transmission is to transmit all the data in TX_FIFO until the FIFO is empty.

The cycle transmission is to transmit all the data in TX_FIFO, after the transmission completion,
wait for a certain time to recover the data in TX_FIFO and then send it until a stop signal is
detected. The data recovery in FIFO is implemented by clearing the read pointer.

8.2.3.4 Timing Diagram

The IR remote control contains many protocols designed by different manufacturers. Here to
NEC protocol as an example, the CIR_TX module uses a variable pulse-width modulation
technique to encompass the various formats of infrared encoding for remote-control
applications. A message is started by a 9 ms AGC burst, which is used to set the gain of the earlier
CIR receivers. This AGC burst is then followed by a 4.5 ms space, which is then followed by the
address and command.

Bit definition: the logical “1” takes 2.25 ms to transmit, while a logical “0” is only 1.12 ms.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1040

Figure 8-12 Definitions of Logical “1” and Logical “0”

Timing for a message:

Figure 8-13 CIR Message Timing Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1041

8.2.4 Programming Guidelines

Figure 8-14 CIR Transmitter Process

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1049

8.3 GMAC

8.3.1 Overview

The Gigabit Medium Access Controller (GMAC) enables a host to transmit and receive data over
Ethernet in compliance with the IEEE 802.3-2002 standard. It supports 10/100/1000 Mbit/s
external PHY with RMII/RGMII interface in full-duplex and half-duplex modes. The internal DMA is
designed for packet-oriented data transfers based on a linked list of descriptors.

The GMAC has the following features:

 One GMAC interface (GMAC) for connecting external Ethernet PHY

 10/100/1000 Mbit/s Ethernet port with RGMII and RMII interfaces

 Compliant with IEEE 802.3-2002 standard

 Supports both full-duplex and half-duplex operations

 Programmable frame length to support Standard or Jumbo Ethernet frames with sizes up to
16 KB

 Supports a variety of flexible address filtering modes

 Separate 32-bit status returned for transmission and reception packets

 Optimization for packet-oriented DMA transfers with frame delimiters

- Supports linked-list descriptor list structure

- Descriptor architecture, allowing large blocks of data transfer with minimum CPU
intervention; each descriptor can transfer up to 4 KB of data

- Comprehensive status reporting for normal operation and transfers with errors

 2 KB TXFIFO for transmission packets and 8 KB RXFIFO for reception packets

 Programmable interrupt options for different operational conditions

 Provides the management data input/output (MDIO) interface for PHY device configuration
andmanagement with configurable clock frequencies

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1050

8.3.2 Block Diagram

The following figure shows the block diagram of GMAC.

Figure 8-15 GMAC Block Diagram

8.3.3 Functional Description

8.3.3.1 External Signals

The following table describes the pin list of GMAC.

Table 8-4 GMAC External Siganls

Signal Name Description Type
RGMII0-RXD0/RMII0-RXD0 RGMII/RMII Receive Data0 I
RGMII0-RXD1/RMII0-RXD1 RGMII/RMII Receive Data1 I
RGMII0-RXD2/RMII0-NULL RGMII Receive Data2 I
RGMII0-RXD3/RMII0-NULL RGMII Receive Data3 I
RGMII0-RXCK/ RMII0-NULL RGMII Receive Clock I
RGMII0-RXCTRL/RMII0-CRS-D
V

RGMII Receive Control/RMII Carrier Sense Receive
Data Valid

I

RGMII0-CLKIN/RMII0-RXER
RGMII Transmit Clock from External/RMII Receive
Error

I

RGMII0-TXD0/RMII0-TXD0 RGMII/RMII Transmit Data0 O
RGMII0-TXD1/RMII0-TXD1 RGMII/RMII Transmit Data1 O
RGMII0-TXD2/RMII0-NULL RGMII Transmit Data2 O
RGMII0-TXD3/RMII0-NULL RGMII Transmit Data3 O

RGMII0-TXCK/RMII0-TXCK
RGMII/RMII Transmit Clock
For RGMII, IO type is output;

I/O

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1051

Signal Name Description Type
For RMII, IO type is input

RGMII0-TXCTRL/RMII0-TXEN RGMII Transmit Control/RMII Transmit Enable O
RGMII0-MDC RGMII Management Data Clock O
RGMII0-MDIO RGMII Management Data Input/ Output I/O
RGMII0-EPHY-25M 25 MHz Output for GMAC PHY O

8.3.3.2 Clock Sources

GMAC has two clock sources. The following table describes the clock sources of the GMAC.

Table 8-5 GMAC Clock Sources

Clock Sources Description Module
AHB Bus clock. The bus frequency is 200 MHz.

CCU
GMAC_25M GMAC 25M clock. The default value is 25 MHz.

8.3.3.3 Typical Application

Figure 8-16 GMAC Typical Application

8.3.3.4 GMAC RX/TX Descriptor

The internal DMA of GMAC transfers data between host memory and internal RX/TX FIFO by a
linked list of descriptors. Each descriptor consists of four words and contains some necessary
information to transfer TX and RX frames. The following figure shows the descriptor list structure.
The address of each descriptor must be 32-bit aligned.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1052

Figure 8-17 GMAC RX/TX Descriptor List

8.3.3.5 TX Descriptor

1st Word of TX Descriptor

Bits Description

31

TX_DESC_CTL
When set, the current descriptor can be used by DMA. This bit is cleared by DMA when
the whole frame is transmitted or all data in the buffer of the current descriptor are
transmitted.

30:17 Reserved

16
TX_HEADER_ERR
When set, the checksum of the header for the transmitted frame is wrong.

15 Reserved

14
TX_LENGHT_ERR
When set, the length of the transmitted frame is wrong.

13 Reserved

12
TX_PAYLOAD_ERR
When set, the checksum of the payload for the transmitted frame is wrong.

11 Reserved

10
TX_CRS_ERR
When set, the carrier is lost during transmission.

9
TX_COL_ERR_0
When set, the frame is aborted because of a collision after the contention period.

8
TX_COL_ERR_1
When set, the frame is aborted because of too many collisions.

7 Reserved

6:3
TX_COL_CNT
The number of collisions before transmission.

2
TX_DEFER_ERR
When set, the frame is aborted because of too much deferral.

1 TX_UNDERFLOW_ERR

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1053

Bits Description
When set, the frame is aborted because of the TX FIFO underflow error.

0
TX_DEFER
When set in Half-Duplex mode, the GMAC defers the frame transmission.

2ndWord of TX Descriptor

Bits Description

31
TX_INT_CTL
When it is set and the current frame has been transmitted, the TX_INT in Interrupt
Status Register will be set.

30
LAST_DESC
When it is set, the current descriptor is the last one of the current frame.

29
FIR_DESC
When it is set, the current descriptor is the first one of the current frame.

28:27
CHECKSUM_CTL
These bits control to insert checksum in the transmit frame.

26
CRC_CTL
When it is set, the CRC field is not transmitted.

25:11 Reserved

10:0
BUF_SIZE
The size of the buffer specified by the current descriptor.

3rd Word of TX Descriptor

Bits Description

31:0
BUF_ADDR
The address of the buffer specified by the current descriptor.

4thWord of TX Descriptor

Bits Description

31:0
NEXT_DESC_ADDR
The address of the next descriptor. It must be 32-bit aligned.

8.3.3.6 RX Descriptor

1st Word of RX Descriptor

Bits Description

31
RX_DESC_CTL
When it is set, the current descriptor can be used by DMA. This bit is cleared by DMA
when the complete frame is received or the buffer of the current descriptor is full.

30
RX_DAF_FAIL
When it is set, the current frame does not pass the DA filter.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1054

Bits Description

29:16

RX_FRM_LEN
When LAST_DESC is not set and no error bit is set, this field is the length of received
data for the current frame.
When LAST_DESC is set, RX_OVERFLOW_ERR and RX_NO_ENOUGH_BUF_ERR are not
set, this field is the length of the received frame.

15 Reserved

14
RX_NO_ENOUGH_BUF_ERR
When it is set, the current frame is clipped because of no enough buffer.

13
RX_SAF_FAIL
When it is set, the current fame does not pass the SA filter.

12 Reserved

11
RX_OVERFLOW_ERR
When it is set, a buffer overflow error occurred and the current frame is wrong.

10 Reserved

9
FIR_DESC
When it is set, the current descriptor is the first descriptor of the current frame.

8
LAST_DESC
When it is set, the current descriptor is the last descriptor of the current frame.

7
RX_HEADER_ERR
When it is set, the checksum of the frame header is wrong.

6
RX_COL_ERR
When it is set, there is a late collision during the reception in half-duplex mode.

5 Reserved

4
RX_LENGTH_ERR
When it is set, the length of the current frame is wrong.

3
RX_PHY_ERR
When it is set, the receive error signal from PHY is asserted during the reception.

2 Reserved

1
RX_CRC_ERR
When it is set, the CRC field of the received frame is wrong.

0
RX_PAYLOAD_ERR
When it is set, the checksum or length of the payload for the received frame is wrong.

2ndWord of RX Descriptor

Bits Description

31
RX_INT_CTL
When it is set and a frame has been received, the RX_INT will not be set.

30:11 Reserved

10:0
BUF_SIZE
The size of the buffer is specified by the current descriptor.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1055

3rd Word of RX Descriptor

Bits Description

31:0
BUF_ADDR
The address of the buffer specified by the current descriptor.

4thWord of RX Descriptor

Bits Description

31:0
NEXT_DESC_ADDR
The address of the next descriptor. This field must be 32-bit aligned.

8.3.4 Programming Guidelines

8.3.4.1 GMAC System Configuration

Perform the following steps:

Step 1 Write 0 to GMAC_BGR_REG[bit16] to assert the module reset.

Step 2 Write 1 to GMAC_BGR_REG[bit16] to deassert the module reset.

Step 3 Write 1 to GMAC_BGR_REG[bit0] to enable the bus clock of the module.

Step 4 Configure the pin interfaces of GMAC by setting GPIO module.

Step 5 Configure GMAC_EPHY_CLK_REG0 Configuration Value to set the transmission clock
source of RGMII/RMII.

 For RGMII RXCLK/CLK125M:

In RGMII mode, in addition to the configuration of the transmission clock source, it is
generally necessary to adjust the timing by configuring the transmission clock delay,
reception clock delay, transmission clock reverse, reception clock reverse.

- Write 0 to the bit [13] and write 1 to the bit [2] to select the RGMII interface.

- If selecting RXCLK as the clock source of RGMII, write 2 to the bit [1:0]; if selecting
CLK125M as the clock source of RGMII, write 1 to the bit [1:0].

- Write 0 to the bit [3], write 0 to the bit [4], write 31 to the bit [9:5], and write 7 to the bit
[12:10] to transmit the reception sequence adjustment.

 For RMII TXCLK:

- Write 1 to the bit [13] and write 0 to the bit [2] to select the RMII interface.

- Write 0 to the bit [0] to select TXCLK as the clock source of RMII.

The configuration value of GMAC_EPHY_CLK_REG0 can refer to the following table.

Table 8-6 GMAC_EPHY_CLK_REG0 Configuration Value

GMAC_EPHY
_CLK_REG0

PHY_SEL RMII_EN ETXDC ERXDC ERXIE ETXIE RMII/RGMII ETCS

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1056

Bit15 Bit13 Bit[12:10] Bit[9:5] Bit4 Bit3 Bit2 Bit[1:0]
RGMII 0 0 7 31 0 0 1 1/2
RMII 0 1 0 0 0 0 0 0

8.3.4.2 GMAC Initialization

Step 1 Write 1 to GMAC_BASIC_CTL1[bit0] to perform the software reset.

Step 2 Write 1 to GMAC_BASIC_CTL1[bit1] to set the DMA priority of TX/RX.

Step 3 Configure GMAC_TX_CTL1 and GMAC_RX_CTL1 to set the configuration of DMA TX and
DMA RX.

Step 4 Configure GMAC_INT_EN to set the corresponding interrupts and shield the needless
interrupts.

Step 5 Configure GMAC_TX_DMA_LIST and GMAC_RX_DMA_LIST to set the first address of the
TX descriptor and the RX descriptor, respectively.

Step 6 Configure GMAC_TX_CTL0 and GMAC_RX_CTL0 to set the TX and RX parameters.
Configure GMAC_BASIC_CTL0 to set the speed, duplex mode, loopback configuration. (If
enabled the auto-negotiation, the configuration is performed as a result of the
negotiation)

Step 7 Configure GMAC_RX_FRM_FLT to set the RX frame filter.

Step 8 Configure GMAC_TX_FLOW_CTL and GMAC_RX_CTL0 to set the control mechanism of TX
and RX.

Step 9 Clear all interrupt flags.

Step 10 Write 1 to GMAC_TX_CTL0[bit31] and write 1 to GMAC_RX_CTL0[bit31] to enable the TX
and RX functions.

8.3.5 Register List

Module Name Base Address
GMAC 0x04500000

Register Name Offset Description
GMAC_BASIC_CTL0 0x0000 GMAC Basic Control Register0
GMAC_BASIC_CTL1 0x0004 GMAC Basic Control Register1
GMAC_INT_STA 0x0008 GMAC Interrupt Status Register
GMAC_INT_EN 0x000C GMAC Interrupt Enable Register
GMAC_TX_CTL0 0x0010 GMAC Transmit Control Register0
GMAC_TX_CTL1 0x0014 GMAC Transmit Control Register1

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1074

8.4 General Purpose ADC (GPADC)

8.4.1 Overview

The General Purpose ADC (GPADC) can convert the external signal into a certain proportion of
digital value, to realize the measurement of analog signal, which can be applied to power
detection and key detection. This ADC is a type of successive approximation register (SAR) A/D
converter.

The GPADC has the following features:

 4-ch successive approximation register (SAR) analog-to-digital converter (ADC)

 64 FIFO depth of data register

 12-bit sampling resolution and 10-bit precision

 Power reference voltage: AVCC, analog input voltage range: 0 to AVCC

 Maximum sampling frequency up to 1 MHz

 Supports three operation modes: single conversion mode, continuous conversion mode,
burst conversion mode

 Input voltage: 0 V to 1.8 V

8.4.2 Block Diagram

The following table shows the block diagram of the GPADC.

Figure 8-18 GPADC Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1075

8.4.3 Functional Description

8.4.3.1 External Signals

The following table describes the external signals of the GPADC.

Table 8-7 GPADC External Signals

Signal Name Description Type
GPADC0 General Purpose ADC Input Channel 0/ BROM Boot Select AI
GPADC1 General Purpose ADC Input Channel 1 AI
GPADC2 General Purpose ADC Input Channel 2 AI
GPADC3 General Purpose ADC Input Channel 3 AI
VCM-ADC External Capacitor Connection A I/O
VREFN-ADC GPADC Reference Voltage (Negative) P
VREFP-ADC GPADC Reference Voltage (Positive) P

8.4.3.2 Clock Sources

The GPADC has one clock source. The following table describes the clock source for GPADC.
Users can see section 2.5 Clock Controller Unit (CCU) for clock setting, configuration, and gating
information.

Table 8-8 GPADC Clock Sources

Clock Sources Description module

HOSC The default frequency is 24 MHz CCU

8.4.3.3 GPADCWork Mode

 Single conversion mode

The GPADC completes one conversion in a specified channel, the converted data is updated at
the data register of the corresponding channel.

 Continuous conversion mode

The GPADC has continuous conversion in a specified channel until the software stops, the
converted data is updated at the data register of the corresponding channel.

 Burst conversion mode

The GPADC samples and converts in a specified channel, and sequentially stores the results in
FIFO.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1076

8.4.3.4 Clock and Timing Requirements

CLK_IN = 24 MHz

CONV_TIME (Conversion Time) = 1/(24MHz/13Cycles) =0.542 (us)

TACQ (ADC acquiring time) > 10RC (R is output impedance of ADC sample circuit, C = 6.4 pF)

ADC Sample Frequency > TACQ+CONV_TIME

Figure 8-19 GPADC Clock and Timing Requirement

8.4.3.5 GPADC Calculate Formula

GPADC calculate formula: GPADC_DATA = Vin/VREF*4095

Where:

VREF = 1.8 V

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1077

8.4.4 Programming Guidelines

8.4.4.1 Initializing GPADC

The GPADC initial process is as follows.

Figure 8-20 GPADC Initial Process

Query Mode

Take channel0 for example:

Step 1 Write 0x1 to the bit [16] of GPADC_BGR_REG to dessert reset.

Step 2 Write 0x1 to the bit [0] of GPADC_BGR_REG to enable the GPADC clock.

Step 3 Write 0x2F to the bit [15:0] of GP_SR_CON to set the acquiring time of ADC.

Step 4 Write 0x1DF to the bit [31:16] of GP_SR_CON to set the ADC sample frequency divider.

Step 5 Write 0x2 to the bit [19:18] of GP_CTRL to set the continuous conversion mode.

Step 6 (Optional) If you need to configure the sampling frequency for each channel, follow
these steps:

a) Configure GP_SMP_TMS (offset: 0x00C0) register to set GP_SMP_TMS value. The
initial sampling frequency set in step4 is multiplied by this value to get the actual
sampling frequency. For detailed configuration information, please refer to section
8.4.4.2 Configuring Sampling Frequency.

b) Configure the GP_CH_SMP_BYP bit (bit {0}) of GP_SMP_BYP (offset: 0x00D0) register
as 0.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1078

Step 7 Write 0x1 to the bit [0] of GP_CS_EN to enable the analog input channel.

Step 8 Write 0x1 to the bit [16] of GP_CTRL to enable the ADC function.

Step 9 Read the bit [0] of GP_DATA_INTS, if the bit is 1, then data conversion is complete.

Step 10 Read the bit [11:0] of GP_CH0_DATA, and calculate voltage value based on GPADC
formula.

Interrupt Mode

Take channel0 for example:

Step 1 Write 0x1 to the bit [16] of GPADC_BGR_REG to dessert reset.

Step 2 Write 0x1 to the bit [0] of GPADC_BGR_REG to enable the GPADC clock.

Step 3 Write 0x2F to the bit [15:0] of GP_SR_CON to set the acquiring time of ADC.

Step 4 Write 0x1DF to the bit [31:16] of GP_SR_CON to set the ADC sample frequency divider.

Step 5 Write 0x2 to the bit [19:18] of GP_CTRL to set the continuous conversion mode.

Step 6 (Optional) If you need to configure the sampling frequency for each channel, follow
these steps:

a) Configure GP_SMP_TMS (offset: 0x00C0) register to set GP_SMP_TMS value. The
initial sampling frequency set in step4 is multiplied by this value to get the actual
sampling frequency. For detailed configuration information, please refer to section
8.4.4.2 Configuring Sampling Frequency.

b) Configure the GP_CH_SMP_BYP bit (bit {0}) of GP_SMP_BYP (offset: 0x00D0) register
as 0. Write 0x1 to the bit [0] of GP_CS_EN to enable the analog input channel.

Step 7 Write 0x1 to the bit [0] of GP_DATA_INTC to enable the GPADC data interrupt.

Step 8 Set the GIC module based on the IRQ 93.

Step 9 Put interrupt handler address into interrupt vector table based on the IRQ 93.

Step 10 Write 0x1 to the bit16 of GP_CTRL to enable the ADC function.

Step 11 Read the bit [11:0] of GP_CH0_DATA from the interrupt handler, calculate voltage value
based on GPADC formula.

8.4.4.2 Configuring Sampling Frequency

The sampling frequency is only configurable in continue conversion mode. Note that the
sampling frequency for each channel is only able to be configured as a multiple of 32 kHz and the
total sampling frequency (sum of the sampling frequency of each channel) should be less than or
equal to 1 MHz.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1079

The sampling frequency configuration steps are as follows.

Step 1 If GPADC function is enabled, Configure the ADC_EN bit (bit [16]) of GP_CTRL (offset:
0x0004) register to disable ADC function.

Step 2 Configure the FS_DIV bit (bit [31:16]) of GP_SR_CON (offset: 0x0000) register to set the
initial sampling frequency of each channel.

Step 3 Configure GP_SMP_TMS (offset: 0x00C0) register to set GP_SMP_TMS value. The initial
sampling frequency is multiplied by this value to get the actual sampling frequency.

NOTE

All GPADC channels should be configured simultaneously.

The following are the all available sampling frequencies for each channel and corresponding
GP_SMP_TMS values.

Table 8-9 GP_SMP_TMS Value Corresponding to Each Sampling Frequency

Sampling frequency GP_SMP_TMS Value Sampling frequency GP_SMP_TMS Value
32 kHz 1 544 kHz 17
64 kHz 2 576 kHz 18
96 kHz 3 608 kHz 19
128 kHz 4 640 kHz 20
160 kHz 5 672 kHz 21
192 kHz 6 704 kHz 22
224 kHz 7 736 kHz 23
256 kHz 8 768 kHz 24
288 kHz 9 800 kHz 25
320 kHz 10 832 kHz 26
352 kHz 11 864 kHz 27
384 kHz 12 896 kHz 28
416 kHz 13 928 kHz 29
448 kHz 14 960 kHz 30
480 kHz 15 992 kHz 31
512 kHz 16 / /

Step 4 Configure the GP_CH_SMP_BYP bit (bit {0}) of GP_SMP_BYP (offset: 0x00D0) register as
0.

Step 5 Configure the ADC_EN bit (bit [16]) of GP_CTRL (offset: 0x0004) register to enable ADC
function.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1092

8.5 GPIO

8.5.1 Overview

The general purpose input/output (GPIO) is one of the blocks controlling the chip multiplexing
pins. The A523 supports 10 groups of GPIO pins. Each pin can be configured as input or output
and these pins are used to generate input signals or output signals for special purposes.

The GPIO has the following features:

 10 groups of ports (PB, PC, PD, PE, PF, PG, PH, PK, PL, PM)

 Software control for each signal pin

 Data input (capture)/output (drive)

 Each GPIO peripheral can produce an interrupt

 Pull-up/Pull-down/no-Pull register control

 Control the direction of every signal

 4 drive strengths in each operating mode

 Up to 158 interrupts

 Configurable interrupt edges

8.5.2 Block Diagram

The following figure shows the block diagram of the GPIO.

Figure 8-21 GPIO Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1093

The GPIO consists of the digital part (GPIO, external interface) and IO analog part (output buffer,
dual pull down, pad). The digital part can select the output interface by the MUX switch; the
analog part can configure pull up/down and buffer strength.

When executing GPIO read state, the GPIO reads the current level of the pin into the internal
register bus. When not executing GPIO read state, the external pin and the internal register bus
are off-status, which is high-impedance.

8.5.3 Functional Description

8.5.3.1 Multi-function Port

The A523 includes 158 multi-functional input/output port pins. There are 10 ports as listed
below.

Table 8-10 Multi-function Port

Port
Name

Number
of Pins

Input
Driver

Output
Driver

Multiplex Pins
Typical Power
Supply

PB 15 Schmitt CMOS
UART/TWI/ OWA/I2S/
SPI/JTAG/PWM/LCD

3.3 V

PC 17 Schmitt CMOS NAND/SDC/SPI/SPIFC 3.3 V/1.8 V
PD 24 Schmitt CMOS LCD/PWM/LVDS/SPI/DSI/UART/PWM 3.3 V/1.8 V

PE 16 Schmitt CMOS
MCSI/TWI/UART/PLL_LOCK_DBG
/PWM/I2S/ SPI/LEDC/ LCD/NCSI

3.3 V/1.8 V

PF 7 Schmitt CMOS SDC /JTAG/UART/I2S 3.3 V/1.8 V
PG 15 Schmitt CMOS SDC/UART/PCIE/I2S 3.3 V/1.8 V

PH 20 Schmitt CMOS
TWI/UART/DMIC/CIR/
SPI/I2S/LEDC/OWA/RGMII0/RMII0/PCIE

3.3 V

PK 24 Schmitt CMOS MCSI /TWI/UART/PWM/NCSI 3.3V/1.8 V

PL 14 Schmitt CMOS
CIR/JTAG/TWI/UART/PWM
/JTAG/I2S/DMIC/SPI

3.3 V/1.8 V

PM 6 Schmitt CMOS UARY/TWI/PWM/CIR/JTAG 3.3 V/1.8 V

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1094

8.5.3.2 GPIO Multiplex Function

Table 8-11 to Table 8-20 show the multiplex function pins of the A523.

NOTE

For each GPIO, Function0 is input function; Function1 is output function; Function7 to Function13 are reserved.

Table 8-11 PB Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PB0 I/O UART2-TX SPI2-CS0 JTAG-MS LCD0-D0 PWM6 PB-EINT0
PB1 I/O UART2-RX SPI2-CLK JTAG-CK LCD0-D1 PWM7 PB-EINT1
PB2 I/O UART2-RTS SPI2-MOSI JTAG-DO LCD0-D8 PB-EINT2
PB3 I/O UART2-CTS SPI2-MISO JTAG-DI LCD0-D9 PB-EINT3
PB4 I/O TWI1-SCK I2S0-MCLK PWM8 PB-EINT4
PB5 I/O TWI1-SDA I2S0-BCLK PWM9 PB-EINT5
PB6 I/O I2S0-LRCK PWM10 PB-EINT6
PB7 I/O OWA-IN I2S0-DOUT0 I2S0-DIN1 LCD0-D16 PWM11 PB-EINT7
PB8 I/O OWA-OUT I2S0-DIN0 I2S0-DOUT1 LCD0-D17 PWM0 PB-EINT8
PB9 I/O UART0-TX TWI0-SCK I2S0-DIN2 I2S0-DOUT2 PB-EINT9
PB10 I/O UART0-RX TWI0-SDA PWM1 I2S0-DIN3 I2S0-DOUT3 PB-EINT10
PB11 I/O TWI5-SCK UART7-RTS SPI1-CS0 PWM2 PB-EINT11
PB12 I/O TWI5-SDA UART7-CTS SPI1-CLK PWM3 PB-EINT12
PB13 I/O TWI4-SCK UART7-TX SPI1-MOSI PWM4 PB-EINT13
PB14 I/O TWI4-SDA UART7-RX SPI1-MISO PWM5 PB-EINT14

Table 8-12 PC Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PC0 I/O NAND-WE SDC2-DS PC-EINT0
PC1 I/O NAND-ALE SDC2-RST PC-EINT1
PC2 I/O NAND-CLE SPI0-MOSI SPIF-MOSI PC-EINT2
PC3 I/O NAND-CE1 SPI0-CS0 SPIF-CS0 PC-EINT3
PC4 I/O NAND-CE0 SPI0-MISO SPIF-MISO PC-EINT4
PC5 I/O NAND-RE SDC2-CLK PC-EINT5
PC6 I/O NAND-RB0 SDC2-CMD PC-EINT6
PC7 I/O NAND-RB1 SPI0-CS1 SPIF-DQS PC-EINT7
PC8 I/O NAND-DQ7 SDC2-D3 SPIF-D7 PC-EINT8
PC9 I/O NAND-DQ6 SDC2-D4 SPIF-D6 PC-EINT9
PC10 I/O NAND-DQ5 SDC2-D0 SPIF-D5 PC-EINT10
PC11 I/O NAND-DQ4 SDC2-D5 SPIF-D4 PC-EINT11
PC12 I/O NAND-DQS SPI0-CLK SPIF-CLK PC-EINT12
PC13 I/O NAND-DQ3 SDC2-D1 PC-EINT13
PC14 I/O NAND-DQ2 SDC2-D6 PC-EINT14
PC15 I/O NAND-DQ1 SDC2-D2 SPI0-WP SPIF-WP PC-EINT15
PC16 I/O NAND-DQ0 SDC2-D7 SPI0-HOLD SPIF-HOLD PC-EINT16

Table 8-13 PD Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PD0 I/O LCD0-D2 LVDS0-D0P DSI0-D0P PWM0 PD-EINT0
PD1 I/O LCD0-D3 LVDS0-D0N DSI0-D0N PWM1 PD-EINT1
PD2 I/O LCD0-D4 LVDS0-D1P DSI0-D1P PWM2 PD-EINT2
PD3 I/O LCD0-D5 LVDS0-D1N DSI0-D1N PWM3 PD-EINT3
PD4 I/O LCD0-D6 LVDS0-D2P DSI0-CKP PWM4 PD-EINT4
PD5 I/O LCD0-D7 LVDS0-D2N DSI0-CKN PWM5 PD-EINT5
PD6 I/O LCD0-D10 LVDS0-CKP DSI0-D2P PWM6 PD-EINT6
PD7 I/O LCD0-D11 LVDS0-CKN DSI0-D2N PWM7 PD-EINT7
PD8 I/O LCD0-D12 LVDS0-D3P DSI0-D3P PWM8 PD-EINT8
PD9 I/O LCD0-D13 LVDS0-D3N DSI0-D3N PWM9 PD-EINT9
PD10 I/O LCD0-D14 LVDS1-D0P DSI1-D0P PWM10 SPI1-CS0/DBI-CSX PD-EINT10
PD11 I/O LCD0-D15 LVDS1-D0N DSI1-D0N PWM11 SPI1-CLK/DBI-SCLK PD-EINT11
PD12 I/O LCD0-D18 LVDS1-D1P DSI1-D1P PWM12 SPI1-MOSI/DBI-SDO PD-EINT12

PD13 I/O LCD0-D19 LVDS1-D1N DSI1-D1N PWM13
SPI1-MISO/DBI-SDI/DBI-T
E/DBI-DCX

PD-EINT13

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1095

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PD14 I/O LCD0-D20 LVDS1-D2P DSI1-CKP PWM14 UART3-TX PD-EINT14
PD15 I/O LCD0-D21 LVDS1-D2N DSI1-CKN PWM15 UART3-RX PD-EINT15
PD16 I/O LCD0-D22 LVDS1-CKP DSI1-D2P PWM16 UART3-RTS PD-EINT16
PD17 I/O LCD0-D23 LVDS1-CKN DSI1-D2N PWM17 UART3-CTS PD-EINT17
PD18 I/O LCD0-CLK LVDS1-D3P DSI1-D3P PWM18 UART4-TX PD-EINT18
PD19 I/O LCD0-DE LVDS1-D3N DSI1-D3N PWM19 UART4-RX PD-EINT19
PD20 I/O LCD0-HSYNC PWM2 UART2-TX UART7-RTS UART4-RTS PD-EINT20
PD21 I/O LCD0-VSYNC PWM3 UART2-RX UART7-CTS UART4-CTS PD-EINT21

PD22 I/O PWM1
SPI1-HOLD/DBI-DCX/DBI
-WRX

UART2-RTS UART7-TX TWI0-SCK PD-EINT22

PD23 I/O PWM0 SPI1-WP/DBI-TE UART2-CTS UART7-RX TWI0-SDA PD-EINT23

Table 8-14 PE Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PE0 I/O MCSI0-MCLK PE-EINT0
PE1 I/O TWI2-SCK UART4-TX PE-EINT1
PE2 I/O TWI2-SDA UART4-RX PE-EINT2
PE3 I/O TWI3-SCK UART4-RTS PE-EINT3
PE4 I/O TWI3-SDA UART4-CTS PE-EINT4
PE5 I/O MCSI1-MCLK PLL-LOCK-DBG I2S2-MCLK LEDC PE-EINT5
PE6 I/O I2S2-BCLK LCD0-TRIG NCSI-D8 PE-EINT6
PE7 I/O I2S2-LRCK LCD1-TRIG NCSI-D9 PE-EINT7
PE8 I/O I2S2-DOUT0 NCSI-D10 PE-EINT8
PE9 I/O I2S2-DIN0 NCSI-D11 PE-EINT9
PE10 I/O MCSI3-MCLK PWM3 NCSI-D12 PE-EINT10
PE11 I/O TWI1-SCK UART5-RTS SPI2-CS0 UART6-TX NCSI-D13 PE-EINT11
PE12 I/O TWI1-SDA UART5-CTS SPI2-CLK UART6-RX NCSI-D14 PE-EINT12
PE13 I/O TWI4-SCK UART5-TX SPI2-MOSI UART6-RTS CSI0-XVS-FSYNC PE-EINT13
PE14 I/O TWI4-SDA UART5-RX SPI2-MISO UART6-CTS CSI1-XVS-FSYNC PE-EINT14
PE15 I/O MCSI2-MCLK PWM2 NCSI-D15 PE-EINT15

Table 8-15 PF Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PF0 I/O SDC0-D1 JTAG-MS I2S3-DIN0 I2S3-DOUT1 PF-EINT0
PF1 I/O SDC0-D0 JTAG-DI I2S3-DOUT0 I2S3-DIN1 PF-EINT1
PF2 I/O SDC0-CLK UART0-TX I2S3-DIN2 I2S3-DOUT2 PF-EINT2
PF3 I/O SDC0-CMD JTAG-DO I2S3-LRCK PF-EINT3
PF4 I/O SDC0-D3 UART0-RX I2S3-DIN3 I2S3-DOUT3 PF-EINT4
PF5 I/O SDC0-D2 JTAG-CK I2S3-BCLK PF-EINT5
PF6 I/O I2S3-MCLK PF-EINT6

Table 8-16 PG Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PG0 I/O SDC1-CLK PG-EINT0
PG1 I/O SDC1-CMD PG-EINT1
PG2 I/O SDC1-D0 PCIE0-PERSTN PG-EINT2
PG3 I/O SDC1-D1 PCIE0-WAKEN PG-EINT3
PG4 I/O SDC1-D2 PCIE0-CLKREQN PG-EINT4
PG5 I/O SDC1-D3 PG-EINT5
PG6 I/O UART1-TX PG-EINT6
PG7 I/O UART1-RX PG-EINT7
PG8 I/O UART1-RTS PG-EINT8
PG9 I/O UART1-CTS PG-EINT9
PG10 I/O I2S1-MCLK PG-EINT10
PG11 I/O I2S1-BCLK PG-EINT11
PG12 I/O I2S1-LRCK PG-EINT12
PG13 I/O I2S1-DOUT0 I2S1-DIN1 PG-EINT13
PG14 I/O I2S1-DIN0 I2S1-DOUT1 PG-EINT14

Table 8-17 PH Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PH0 I/O TWI0-SCK RGMII0-RXD1/RMII0-RXD1 PH-EINT0
PH1 I/O TWI0-SDA RGMII0-RXD0/RMII0-RXD0 PH-EINT1

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1096

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PH2 I/O TWI1-SCK I2S2-DIN3 RGMII0-RXCTL/RMII0-CRS-DV I2S2-DOUT3 PH-EINT2
PH3 I/O TWI1-SDA IR-TX I2S2-DIN2 RGMII0-CLKIN/RMII0-RXER I2S2-DOUT2 PH-EINT3
PH4 I/O UART3-TX SPI1-CS0 RGMII0-TXD1/RMII0-TXD1 PH-EINT4
PH5 I/O UART3-RX SPI1-CLK LEDC RGMII0-TXD0/RMII0-TXD0 PH-EINT5
PH6 I/O UART3-RTS SPI1-MOSI OWA-IN RGMII0-TXCK/RMII0-TXCK PH-EINT6
PH7 I/O UART3-CTS SPI1-MISO OWA-OUT RGMII0-TXCTL/RMII0-TXEN PH-EINT7
PH8 I/O DMIC-CLK SPI2-CS0 I2S2-MCLK I2S2-DIN2 PH-EINT8
PH9 I/O DMIC-DATA0 SPI2-CLK I2S2-BCLK RGMII0-MDC PH-EINT9
PH10 I/O DMIC-DATA1 SPI2-MOSI I2S2-LRCK RGMII0-MDIO PH-EINT10
PH11 I/O DMIC-DATA2 SPI2-MISO I2S2-DOUT0 I2S2-DIN1 PCIE0-PERSTN PH-EINT11
PH12 I/O DMIC-DATA3 TWI3-SCK I2S2-DIN0 I2S2-DOUT1 PCIE0-WAKEN PH-EINT12
PH13 I/O TWI3-SDA I2S3-MCLK RGMII0-EPHY-25M PH-EINT13
PH14 I/O I2S3-BCLK RGMII0-RXD3/RMII0-NULL PH-EINT14
PH15 I/O I2S3-LRCK RGMII0-RXD2/RMII0-NULL PH-EINT15
PH16 I/O I2S3-DOUT0 I2S3-DIN1 RGMII0-RXCK/RMII0-NULL CLK-FANOUT0 PH-EINT16
PH17 I/O I2S3-DOUT1 I2S3-DIN0 RGMII0-TXD3/RMII0-NULL PH-EINT17
PH18 I/O IR-TX I2S3-DOUT2 I2S3-DIN2 RGMII0-TXD2/RMII0-NULL PH-EINT18
PH19 I/O IR-RX I2S3-DOUT3 I2S3-DIN3 LEDC PCIE0-CLKREQN PH-EINT19

Table 8-18 PK Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PK0 I/O MCSIA-D0N PK-EINT0
PK1 I/O MCSIA-D0P PK-EINT1
PK2 I/O MCSIA-D1N PK-EINT2
PK3 I/O MCSIA-D1P PK-EINT3
PK4 I/O MCSIA-CKN TWI2-SCK PK-EINT4
PK5 I/O MCSIA-CKP TWI2-SDA PK-EINT5
PK6 I/O MCSIB-D0N PK-EINT6
PK7 I/O MCSIB-D0P PK-EINT7
PK8 I/O MCSIB-D1N PK-EINT8
PK9 I/O MCSIB-D1P PK-EINT9
PK10 I/O MCSIB-CKN TWI3-SCK PK-EINT10
PK11 I/O MCSIB-CKP TWI3-SDA PK-EINT11
PK12 I/O MCSIC-D0N UART7-TX TWI4-SCK NCSI-PCLK PK-EINT12
PK13 I/O MCSIC-D0P UART7-RX TWI4-SDA NCSI-MCLK PK-EINT13
PK14 I/O MCSIC-D1N UART7-RTS UART5-RTS NCSI-HSYNC PK-EINT14
PK15 I/O MCSIC-D1P UART7-CTS UART5-CTS NCSI-VSYNC PK-EINT15
PK16 I/O MCSIC-CKN TWI5-SCK UART5-TX NCSI-D0 PK-EINT16
PK17 I/O MCSIC-CKP TWI5-SDA UART5-RX NCSI-D1 PK-EINT17
PK18 I/O MCSID-D0N MCSI0-MCLK UART6-TX NCSI-D2 PK-EINT18
PK19 I/O MCSID-D0P TWI2-SCK UART6-RX NCSI-D3 PK-EINT19
PK20 I/O MCSID-D1N TWI2-SDA UART6-RTS NCSI-D4 PK-EINT20
PK21 I/O MCSID-D1P MCSI1-MCLK UART6-CTS NCSI-D5 PK-EINT21
PK22 I/O MCSID-CKN TWI3-SCK PWM6 NCSI-D6 PK-EINT22
PK23 I/O MCSID-CKP TWI3-SDA PWM7 NCSI-D7 PK-EINT23

Table 8-19 PL Multiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PL0 I/O S-TWI0-SCK PL-EINT0
PL1 I/O S-TWI0-SDA PL-EINT1
PL2 I/O S-UART0-TX S-UART1-TX S-PWM2 PL-EINT2
PL3 I/O S-UART0-RX S-UART1-RX S-PWM3 PL-EINT3
PL4 I/O S-JTAG-MS S-PWM4 S-I2S0-BCLK PL-EINT4
PL5 I/O S-JTAG-CK S-PWM5 S-I2S0-LRCK S-DMIC-DATA3 PL-EINT5
PL6 I/O S-JTAG-DO S-PWM6 S-I2S0-DIN1 S-I2S0-DOUT0 S-DMIC-DATA2 PL-EINT6
PL7 I/O S-JTAG-DI S-PWM7 S-I2S0-DOUT1 S-I2S0-DIN0 S-DMIC-DATA1 PL-EINT7
PL8 I/O S-TWI1-SCK S-RJTAG-MS S-I2S0-MCLK S-DMIC-DATA0 PL-EINT8
PL9 I/O S-TWI1-SDA S-RJTAG-CK S-PWM1 S-DMIC-CLK PL-EINT9
PL10 I/O S-PWM0 S-RJTAG-DO S-DMIC-DATA0 S-SPI0-CS0 PL-EINT10
PL11 I/O S-IR-RX S-RJTAG-DI S-DMIC-DATA1 S-SPI0-CLK PL-EINT11
PL12 I/O S-TWI2-SCK S-PWM8 S-UART0-TX S-DMIC-DATA2 S-SPI0-MOSI PL-EINT12
PL13 I/O S-TWI2-SDA S-PWM9 S-UART0-RX S-DMIC-DATA3 S-SPI0-MISO PL-EINT13

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1097

Table 8-20 PMMultiplex Function

Pin Name IO Type Function2 Function3 Function4 Function5 Function6 Function14
PM0 I/O S-UART0-TX S-UART1-TX S-PWM2 PM-EINT0
PM1 I/O S-UART0-RX S-UART1-RX S-PWM3 PM-EINT1
PM2 I/O S-TWI1-SCK S-RJTAG-MS S-PWM6 PM-EINT2
PM3 I/O S-TWI1-SDA S-RJTAG-CK S-PWM7 PM-EINT3
PM4 I/O S-PWM8 S-RJTAG-DO S-TWI2-SCK PM-EINT4
PM5 I/O S-IR-RX S-RJTAG-DI S-TWI2-SDA S-PWM9 PM-EINT5

8.5.3.3 Port Function

The Port Controller supports 10 GPIOs, every GPIO can configure as Input, Output, Function Peripheral, IO disable or Interrupt function. The
configuration instruction of every function is as follows.

Table 8-21 Port Function

Function Buffer Strength Pull Up Pull Down
Input GPIO/Multiplexing Input / X X
Output GPIO/Multiplexing Output Y X X

Disable
Pull Up / Y N
Pull Down / N Y

Interrupt Trigger / X X

/: non-configure, configuration is invalid

Y: configure

X: Select configuration according to the actual situation

N: Forbid to configure

8.5.3.4 Pull Up/Down and High-Impedance Logic

Each IO pin can configure the internal pull-up/down function or high-impedance.

Figure 8-22 Pull up/down Logic

High-impedance, the output is float state, all buffer is off, the level is decided by external high/low level. When high-impedance, the software
configures the switch on Rpu and Rpd as off, and the multiplexing function of IO is set as IO disable or input by software.

Pull-up, an uncertain signal is pulled high by resistance, the resistance has a current-limiting function. When pulling up, the switch on Rpu is
conducted by software configuration, the IO is pulled up to VCC by Rpu.

Pull-down, an uncertain signal is pulled low by a resistance. When pulling down, the switch on Rpd is conducted by software configuration, the IO is
pulled down to GND by Rpd.

The pull-up/down of each IO is weak pull-up/down.

The setting of pull-down, pull-up, high-impedance is decided by the external circuit.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1098

8.5.3.5 Buffer Strength

Each IO can be set as different buffer strength. The IO buffer diagram is as follows.

Figure 8-23 IO Buffer Strength Diagram

When output high level, the n0, n1, n2, n3 of NMOS is off, the p0, p1, p2, p3 of PMOS is on. When
the buffer strength is set to 0 (buffer strength is weakest), only the p0 is on, the output
impedance is maximum, the impedance value is r0. When the buffer strength is set to 1, only the
p0 and p1 is on, the output impedance is equivalent to two r0 in parallel, the impedance value is
r0/2. When the buffer strength is 2, only the p0, p1, and p2 is on, the output impedance is
equivalent to three r0 in parallel, the impedance value is r0/3. When buffer strength is 3, the p0,
p1, p2, and p3 is on, the output impedance is equivalent to four r0 in parallel, the impedance
value is r0/4.

When output low level, the p0, p1, p2, p3 of PMOS is off, the n0, n1, n2, n3 of NMOS is on. When
the buffer strength is set to 0 (buffer strength is weakest), only the n0 is on, the output
impedance is maximum, the impedance value is r0. When the buffer strength is set to 1, only the
n0 and n1 is on, the output impedance is equivalent to two r0 in parallel, the impedance value is
r0/2. When the buffer strength is 2, only the n0, n1, and n2 is on, the output impedance is
equivalent to three r0 in parallel, the impedance value is r0/3. When the buffer strength is 3, the
n0, n1, n2, and n3 is on, the output impedance is equivalent to four r0 in parallel, the impedance
value is r0/4.

When GPIO is set to input or interrupt function, between the output driver circuit and the port is
unconnected, the driver configuration is invalid.

8.5.3.6 Interrupt

Each group IO has an independent interrupt number. The IO within-group uses one interrupt
number when one IO generates interrupt, the GPIO pins sent interrupt request to GIC. External
Interrupt Status Register is used to query which IO generates interrupt.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1099

The interrupt trigger of GPIO supports the following trigger types.

 Positive Edge: When a low level changes to a high level, the interrupt will generate. No
matter how long a high level keeps, the interrupt generates only once.

 Negative Edge: When a high level changes to a low level, the interrupt will generate. No
matter how long a low level keeps, the interrupt generates only once.

 High Level: Just keep a high level and the interrupt will always generate.

 Low Level: Just keep a low level and the interrupt will always generate.

 Double Edge: Positive and negative edge.

External Interrupt Configure Register is used to configure the trigger type.

The GPIO interrupt supports hardware debounce function by setting External Interrupt
Debounce Register. Sample trigger signal using a lower sample clock, to reach the debounce
effect because the dither frequency of the signal is higher than the sample frequency.

Set the sample clock source by PIO_INT_CLK_SELECT and the prescale factor by
DEB_CLK_PRE_SCALE.

8.5.4 Programming Guidelines

8.5.4.1 Disable

The steps to disable I/O pins are as follows:

Step 1 Write FFFF to the Px_SELECT bit of the Px_CFG register to disable the I/O pins.

Step 2 If it is needed to control whether the I/O pins are pulled up or pulled down, configure
Px_PULL register.

 Write 2’b01 to the Px_PULL bit of Px_PULL register to pull up the I/O pins. In this
case, the default status of I/O pins is logic-high.

 Write 2’b10 to the Px_PULL bit of Px_PULL register to pull down the I/O pins. In this
case, the default status of I/O pins is logic-low.

8.5.4.2 Input

The steps to configure I/O pins as inputs are as follows:

Step 1 Write 0000 to the Px_SELECT bit of the Px_CFG register to enable input function.

Step 2 If it is needed to control whether the I/O pins are pulled up or pulled down, configure
Px_PULL register.

 Write 2’b01 to the Px_PULL bit of Px_PULL register to pull up the I/O pins.

 Write 2’b10 to the Px_PULL bit of Px_PULL register to pull down the I/O pins.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1100

Step 3 Configure the Px_DAT bit of the Px_DAT register to read the pin status.

 If the external input is driven, the value of the Px_DAT bit is the external input value.

 If the external input is not driven, the value of the Px_DAT bit is 1 when the I/O pins
are pulled up and is 0 when pins are pulled down.

8.5.4.3 Output

The steps to configure I/O pins as outputs are as follows:

Step 1 Write 0001 to the Px_SELECT bit of the Px_CFG register to enable outputput function.

Step 2 If it is needed to set the buffer strength of the I/O pins, configure the Px_DRV bit of the
Px_DRV register.

 When the Px_DRV bit is configured as 00, the buffer strength is the weakest.

 When the Px_DRV bit is configured as 11, the buffer strength is the strongest.

 The default value of the Px_DRV register is 01.

Step 3 If it is needed to control whether the I/O pins are pulled up or pulled down, configure
Px_PULL register.

 Write 2’b01 to the Px_PULL bit of Px_PULL register to pull up the I/O pins.

 Write 2’b10 to the Px_PULL bit of Px_PULL register to pull down the I/O pins.

Step 4 Configure the Px_DAT bit of the Px_DAT register to output 1 or 0 to the I/O pins.

 If output function is enabled, the pin status is the same as the corresponding bit.

 If output function is disabled, the value of the Px_DAT bit is 1 when the I/O pins are
pulled up and is 0 when pins are pulled down.

8.5.4.4 Interrupt

The steps to configure I/O pins as interrupt pins are as follows:

Step 1 Write 1110 to the Px_SELECT bit of the Px_CFG register to enable interrupt function.

Step 2 If it is needed to control whether the I/O pins are pulled up or pulled down, configure
Px_PULL register.

 Write 2’b01 to the Px_PULL bit of Px_PULL register to pull up the I/O pins. in this
case, if external pins are not driven, the input level is high by default.

 Write 2’b10 to the Px_PULL bit of Px_PULL register to pull down the I/O pins. In this
case, if external pins are not driven, the input level is low by default.

Step 3 Configure the EINTx_CFG bit of Px_INT_CFG register to set the interrupt generation
mode.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1101

Step 4 Configure Px_INT_DEB regsiter to set debounce parameters including sample clock
source and prescale factor.

Step 5 Write 1 to the EINTx_STATUS bit of the Px_INT_STA register to clear IRQ pending.

Step 6 Write 1 to the EINTx_CTL bit of the Px_INT_CTL register to enable interrupt.

Step 7 After an interrupt is processed, repeat Step5 to clrear IRQ pending and wait for next
interrupt operation.

Step 8 Write 0 to the EINTx_CTL bit of the Px_INT_CTL register to disable interrupt function.

8.5.4.5 Multi Function

The steps to configure I/O pins as for function multiplexing are as follows:

Step 1 Configrue the Px_SELECT bit of the Px_CFG register to select the funciton needed.

Step 2 Configure the Px_DRV bit of the Px_DRV register to set buffer strength depending on the
characteristic of the selected funciton.

Step 3 If it is needed to control whether the I/O pins are pulled up or pulled down, configure
Px_PULL register.

 Write 2’b01 to the Px_PULL bit of Px_PULL register to pull up the I/O pins.

 Write 2’b10 to the Px_PULL bit of Px_PULL register to pull down the I/O pins.

 If external pins are driven, the pin status is the same as the corresponding bit.

 If external pins are not driven, the value of the Px_DAT bit is 1 when the I/O pins are
pulled up and 0 when pins are pulled down.

8.5.4.6 Power Configuation

Configuring Group Power Volatge

A523 only supports to set group power voltage in PF ports, which is able to be set as 3.3 V or 1.8V
by configuring GPIO_POW_VAL_SET_CTL register. The group power voltage in other ports is un
configurable and depended on the peripheral circuit.

Configuring Group Withstand Voltage

Configuring group withstand voltage intends to ensure that the internal withstand circuit voltage
is consistent with group voltage. There are two modes, adaptive mode and manual mode, for
users. In adaptive mode, the interl withstand circuit will adjust group withstand mode
automatically depending on the detected GPIO voltage. The default mode is manual mode and it
is recommended to choose manual mode in A523.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1102

The following steps describe how to configure group withstand voltage.

 Adptive Mode

The following table shows the configuration for registers in adptive mode.

Bit Register
Px_PWR_MOD_SEL bit = 0 GPIO_POW_MOD_SEL
VCC_Px_WS_VOL_MOD_SEL bit = 0 GPIO_POW_MS_CTL

 Manual Mode (Recommended)

Step 1 Before using GPIO, read GPIO_POW_VAL register to obtain current group voltage.

 If the current power supply is 1.8V, continue from Step2.

 If the current power supply is 3.3V, continue from Step4.

Step 2 Read the PB_PWR_VAL bit (bit [1]) of GPIO_POW_VAL register to obtain current group
voltage.

Step 3 Configure withstand voltage.

The following table shows the corresponding withstand voltage for each group voltage and
corresponding configuration register.

Group
Voltage

Withstand
Voltage

Bit Register

1.8V 1.8V
Px_PWR_MOD_SEL bit = 0 GPIO_POW_MOD_SEL
VCC_Px_WS_VOL_MOD_SEL bit = 1 GPIO_POW_MS_CTL

2.5V 3.3V Px_PWR_MOD_SEL bit = 1 GPIO_POW_MOD_SEL
3.3V 3.3V Px_PWR_MOD_SEL bit = 1 GPIO_POW_MOD_SEL

Step 4 After the I/O pins are power-on, repeat Step2 and Step3 to configure withstand voltage
according to the actual group voltage.

Step 5 When adjusting group voltage during usage, follow the steps blow to configure
withstand voltage.

 If the group voltage is to be switched from 1.8 V to 3.3 V, configure withstand
voltage to 3.3 V before switching.

 If the group voltage is to be switched from 3.3 V to 1.8 V, configure withstand
voltage to 1.8 V after switching.

8.5.5 Register List

There are two groups of registers for GPIO.

Module Name Base Address
GPIO 0x0200 0000
S_GPIO 0x0702 2000

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1284

8.6 LEDC

8.6.1 Overview

The LEDC is used to control the external LED lamp.

The LEDC has the following features:

 Configurable LED output high-/low-level width

 Configurable LED reset time

 Configurable interval time for packets and frame data

 LEDC data supports DMA configuration mode and CPU configuration mode

 Maximum 1024 LEDs serial connect

 LED data transfer rate up to 800 kbit/s

 Configurable RGB display mode

8.6.2 Block Diagram

The following figure shows a block diagram of the LEDC.

Figure 8-24 LEDC Block Diagram

LEDC contains the following sub-blocks:

Table 8-22 LEDC Sub-blocks

Sub-block Description
config register configuration
control LEDC timing control and status control
FIFO 24-bit width x 32 depth
Data_trans Convert input data to the 0 and 1 characters of LED

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1285

8.6.3 Functional Description

8.6.3.1 External Signals

The following table describes the external signals of the LEDC.

Table 8-23 LEDC External Signals

Signal Name Description Type
LEDC Intelligent Control LED Signal Output O

8.6.3.2 Clock Sources

The following table describes the clock sources of the LEDC.

Table 8-24 LEDC Clock Sources

Clock Sources Description module
HOSC 24 MHz

CCU
PERI0_600M Peripheral Clock. The default value is 600 MHz

8.6.3.3 Reset

The following table describes the reset of the LEDC.

Table 8-25 LEDC Reset

Reset signal Source
LEDC_RST CCU

8.6.3.4 LEDC Timing

Figure 8-25 LEDC Package Output Timing Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1286

Figure 8-26 LEDC 1-frame Output Timing Diagram

8.6.3.5 LEDC Input Data Structure

The RGB mode of LEDC data is configurable. By default, the data is sent in GRB order, and the
higher bit is transmitted first.

Figure 8-27 LEDC Input Data Structure

8.6.3.6 LEDC Typical Circuit

Figure 8-28 LEDC Typical Circuit

C1 is the filter capacitor of LED light, and its value is usually 100 Nf.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1287

8.6.3.7 LEDC Data Input Code

Figure 8-29 LEDC Data Input Code

8.6.3.8 LEDC Data Transfer Time

The time parameter of the typical LED specification shows as follows.

Table 8-26 Time Parameters of Typical LED Specification

T0H 0 code, high-level time 220 ns to 380 ns
T0L 0 code, low-level time 580 ns to 1.6 us
T1H 1 code, high-level time 580 ns to 1.6 us
T1L 1 code, low-level time 220 ns to 420 ns
RESET Frame unit, low-level time > 280 us

8.6.3.9 LEDC Data Transfer Mode

Figure 8-30 LEDC Data Transfer Mode

8.6.3.10 LEDC Parameter

 PAD rate > 800 kbit/s

 LED number supported: T0-code: 800 ns to 1980 ns, T1-code: 800 ns to 2020 ns

When the LED refresh rate is 30 frame/s, LED number supported is (1 s/30-280 us)/ ((800 ns to
2020 ns) *24) =1023 to 681.

When the LED refresh rate is 60 frame/s, LED number supported is (1 s/60-280 us)/ ((800 ns to
2020 ns) *24) =853 to 337.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1288

8.6.3.11 LEDC Data Transfer

The LEDC supports DMA data transfer mode or CPU data transfer mode. The DMA data transfer
mode is set by LEDC_DMA_EN

 Data transfer in DMA mode

When the valid space of internal FIFO is greater than the setting FIFO free space threshold, the
LEDC sends DMA_REQ to require DMA to transfer data from DRAM to LEDC. The maximum data
transfer size in DMAmode is 16 words. (The internal FIFO level is 32.)

 Data transfer in CPUmode

When the valid space of internal FIFO is greater than the setting FIFO free space threshold, the
LEDC sends LEDC_CPUREQ_INT to require CPU to transfer data to LEDC. The transfer data size in
CPU mode is controlled by software. The internal FIFO destination address is 0x06700014. The
data width is 32-bit. (The lower 24-bit is valid.)

8.6.3.12 LEDC Interrupt

Module Name Description

FIFO_OVERFLOW_INT

FIFO overflow interrupt.
The data written by external is more than the maximum
storage space of LED FIFO, the LEDC will be in data loss state.
At this time, software needs to deal with the abnormal
situation. The processing mode is as follows.
The software can query LED_FIFO_DATA_REG to determine
which data has been stored in the internal FIFO of LEDC. The
LEDC performs soft_reset operation to refresh all data.

FIFO_CPUREQ_INT
FIFO request CPU data interrupt
When FIFO data is less than a threshold, the interrupt will be
reported to the CPU.

LEDC_TRANS_FINISH_INT
Data transfer complete interrupt
The value indicates that the data configured as
total_data_length has been transferred completely.

LEDC interrupt usage scenario:

 CPU mode

The software can enable GLOBAL_INT_EN, FIFO_CPUREQ_INT_EN, WAITDATA_TIMEOUT_INT_EN,
FIFO_OVERFLOW_INT_EN, LEDC_TRANS_FINISH_INT_EN, and cooperate with
LEDC_FIFO_TRIG_LEVEL to use. When FIFO_CPUREQ_INT is set to 1, the software can configure
data of LEDC_FIFO_TRIG_LEVEL to LEDC.

 DMA mode

The software can enable GLOBAL_INT_EN, WAITDATA_TIMEOUT_INT_EN,
FIFO_OVERFLOW_INT_EN, LEDC_TRANS_FINISH_INT_EN, and cooperate with

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1289

LEDC_FIFO_TRIG_LEVEL to use. When DMA receives LEDC DMA_REQ, DMA can transfer data of
LEDC_FIFO_TRIG_LEVEL to LEDC.

8.6.4 Programming Guidelines

8.6.4.1 LEDC Normal Configuration Process

Step 1 Configure LEDC_CLK and bus pclk.

Step 2 Configure the written LEDC data.

Step 3 Configure LED_T01_TIMING_CTRL_REG, LEDC_DATA_FINISH_CNT_REG,
LED_RESET_TIMING_CTRL_REG, LEDC_WAIT_TIME0_CTRL_REG, LEDC_DMA_CTRL_REG,
LEDC_INTERRUPT_CTRL_REG. Configure 0-code, 1-code, reset time, LEDC waiting time,
and the number of external connected LEDC and the threshold of DMA transfer data.

Step 4 Configure LEDC_CTRL_REG to enable LEDC_EN, the LEDC will start to output data.

Step 5 When the LEDC interrupt is pulled up, it indicates the configured data has transferred
complete, at this time LED_EN will be set to 0, and the read/write point of LEDC FIFO is
cleared to 0.

Step 6 Repeat step1, 2, 3, 4 to re-execute a new round of configuration, enable LEDC_EN, the
LEDC will start new data transfer.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1290

Figure 8-31 LEDC Normal Configuration Process

8.6.4.2 LEDC Abnormal Scene Processing Flow

WAITDATA_TIMEOUT Abnormal Status

Step 1 When WAITDATA_TIMEOUT_INT appears, it indicates the internal FIFO data request of
LEDC cannot obtain a response, at this time if the default output level is low, then the
external LED may think there was a reset operation and cause LED data to be flushed
incorrectly.

Step 2 The LEDC needs to be performed soft_reset operation (LEDC_SOFT_RESET=1); after
soft_reset, the LEDC_EN will be pulled-down automatically, all internal status register
and control state machine will return to the idle state, the LEDC FIFO read & write point
is cleared to 0, the LEDC interrupt is cleared.

Step 3 Setting reset_led_en to 1 indicates LEDC can actively send a reset operation to ensure
the external LED lamp in the right state.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1291

Step 4 The software reads the status of reset_led_en, when the status value is 1, it indicates
LEDC does not perform the transmission of LED reset operation; when the status value is
0, the LEDC completes the transmission of LED reset operation.

Step 5 When LEDC reset operation finishes, the LEDC data and register configuration need to
be re-operated to start re-transmission data operation.

Figure 8-32 LEDC Timeout Abnormal Processing Flow

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1292

FIFO Overflow Abnormal Status

Step 1 When FIFO_OVERFLOW_INT appears, it indicates the data configured by software
exceeds the LEDC FIFO space, at this time the redundant data will be lost.

Step 2 The software needs to read data in LEDC_FIFO_DATA_X to confirm the lost data.

Step 3 The software re-configures the lost data to the LEDC.

Step 4 If the software uses the soft_reset operation, the operation is the same with the timeout
abnormal processing flow.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1293

Figure 8-33 FIFO Overflow Abnormal Processing Flow

8.6.5 Register List

Module Name Base Address
LEDC 0x02008000

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1304

8.7 Low rate ADC (LRADC)

8.7.1 Overview

The low rate analog-to-digital converter (LRADC) can convert the external signal into a certain
proportion of digital value, to realize the measurement of analog signal, which can be applied to
power detection and key detection.

The LRADC has the following features:

 2-ch LRADC input

 6-bit resolution

 Sampling rate up to 2 KHz

 Supports hold key and general key

 Support normal, continue and single work mode

 Power supply voltage:1.8V, power reference voltage:1.35V

NOTE

The LRADC has a 6-bit resolution, 1-bit offset error, and 1-bit precision error. After the LRADC
calibrates 1-bit offset error, the LRADC has 5-bit precision.

8.7.2 Block Diagram

The following figure shows the block diagram of the LRADC.

Figure 8-34 LRADC Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1305

8.7.3 Functional Description

8.7.3.1 External Signals

The following table describes the external signals of the LRADC. The LRADC pin is the analog
input signal.

Table 8-27 LRADC External Signals

Signal Name Description Type
LRADC0 Low Rate ADC AI
LRADC1 Low Rate ADC AI

8.7.3.2 Clock Source

The LRADC has one clock source. The following table describes the clock source for LRADC.

Table 8-28 LRADC Clock Sources

Clock Source Description
LOSC 32.768 kHz LOSC

8.7.3.3 LRADCWorking Mode

 Normal Mode

The LRADC gathers 8 samples, the average value of these 8 samples is updated in the data
register, and the data interrupt sign is enabled. It is sampled repeatedly according to this mode
until the LRADC is disabled.

 Continuous Mode

The LRADC gathers 8 samples every other 8*(N+1) sample cycle. The average value of every 8
samples is updated in the data register, and the data interrupt sign is enabled. (N is defined in
the bit [19:16] of LRADC_CTRL).

 Single Mode

The LRADC gathers 8 samples, and the average value of these 8 samples is updated in the data
register, and the data interrupt sign is enabled at the same time, then the LRADC stops sample.

8.7.3.4 Interrupt

Each LRADC channel has five interrupt sources and five interrupt enable controls.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1306

Figure 8-35 LRADC Interrupt

When the input voltage is between LEVEL A (1.35 V) and LEVEL B (control by the bit [5:4] of
LRADC_CTRL), the IRQ1 can be generated. When the input voltage is lower than LEVEL B, the
IRQ2 can be generated.

If the controller receives IRQ1 and does not receive IRQ2 at the same time, then the controller
will generate Hold Key Pending, otherwise Data IRQ Pending.

The Hold KEY usually is used for the self-locking key. When the self-locking key holds a locking
status, the controller receives the IRQ2, then the controller will generate Already Hold Pending.

8.7.3.5 Calculation Formula

Calculation formula: LRADC_DATA = Vin/VREF*63, VREF=1.35 V

8.7.4 Programming Guidelines

8.7.4.1 Normal Detecting

Perform the following steps for normal detecting mode:

Step 1 Configure LRADC_BGR_REG[LRADC_GATING] to 0 to disable the clock of LRADC.

Step 2 Configure LRADC_BGR_REG[LRADC_RST] to 1 to deassert the reset of LRADC.

Step 3 Configure LRADC_BGR_REG[LRADC_GATING] to 1 to enable the clock of LRADC.

Step 4 Configure LRADC_CTRL[LRADC_SAMPLE_RATE] to set the appropriate sampling
frequency.

Step 5 Configure LRADC_CTRL[LEVELB_VOL] to set the appropriate voltage threshold.

Step 6 Configure LRADC_CTRL[FIRST_CONVER_DLY] and LRADC_CTRL[LEVELA_B_CNT] to set
the appropriate debounce value.

Step 7 Configure LRADC_CTRL[LRADC_HOLD_KEY_EN] to 1.

Step 8 Configure LRADC_CTRL[KEY_MODE_SELECT] to 0 to set the normal mode.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1307

Step 9 Configure LRADC_INTC to enable the corresponding interrupt.

Step 10 Configure LRADC_CTRL[LRADC_HOLD_KEY_EN] to 1.

Step 11 Read the corresponding key voltage value from LRADC_DATA when the CPU receives the
LRADC interrupt.

8.7.4.2 Single Detecting

Perform the following steps for the single detecting mode:

Step 1 Configure LRADC_BGR_REG[LRADC_GATING] to 0 to disable the clock of LRADC.

Step 2 Configure LRADC_BGR_REG[LRADC_RST] to 1 to deassert the reset of LRADC.

Step 3 Configure LRADC_BGR_REG[LRADC_GATING] to 1 to enable the clock of LRADC.

Step 4 Configure LRADC_CTRL[LRADC_SAMPLE_RATE] to set the appropriate sampling
frequency.

Step 5 Configure LRADC_CTRL[LEVELB_VOL] to set the appropriate voltage threshold.

Step 6 Configure LRADC_CTRL[FIRST_CONVER_DLY] and LRADC_CTRL[LEVELA_B_CNT] to set
the appropriate debounce value.

Step 7 Configure LRADC_CTRL[LRADC_HOLD_KEY_EN] to 1.

Step 8 Configure LRADC_CTRL[KEY_MODE_SELECT] to 1 to set the single mode.

Step 9 Configure LRADC_INTC to enable the corresponding interrupt.

Step 10 Configure LRADC_CTRL[LRADC_HOLD_KEY_EN] to 1.

Step 11 Read the corresponding key voltage value from LRADC_DATA when the CPU receives the
LRADC interrupt.

8.7.4.3 Continuous Detecting

Perform the following steps for continuous detecting mode:

Step 1 Configure LRADC_BGR_REG[LRADC_GATING] to 0 to disable the clock of LRADC.

Step 2 Configure LRADC_BGR_REG[LRADC_RST] to 1 to deassert the reset of LRADC.

Step 3 Configure LRADC_BGR_REG[LRADC_GATING] to 1 to enable the clock of LRADC.

Step 4 Configure LRADC_CTRL[LRADC_SAMPLE_RATE] to set the appropriate sampling
frequency.

Step 5 Configure LRADC_CTRL[LEVELB_VOL] to set the appropriate voltage threshold.

Step 6 Configure LRADC_CTRL[FIRST_CONVER_DLY] and LRADC_CTRL[LEVELA_B_CNT] to set
the appropriate debounce value.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1308

Step 7 Configure LRADC_CTRL[LRADC_HOLD_KEY_EN] to 1.

Step 8 Configure LRADC_CTRL[KEY_MODE_SELECT] to 2 to set the continuous mode, and
configure LRADC_CTRL[CONTINUE_TIME_SELECT] to set a sampling interval.

Step 9 Configure LRADC_INTC to enable the corresponding interrupt.

Step 10 Configure LRADC_CTRL[LRADC_HOLD_KEY_EN] to 1.

Step 11 Read the corresponding key voltage value from LRADC_DATA when the CPU receives the
LRADC interrupt.

8.7.5 Register List

Module Name Base Address
LRADC 0x02009800

Register Name Offset Description
LRADC_CTRL 0x0000 LRADC Control Register
LRADC_INTC 0x0004 LRADC Interrupt Control Register
LRADC_INTS 0x0008 LRADC Interrupt Status Register
LRADC_DATA0 0x000C LRADC Data Register0
LRADC_DATA1 0x0010 LRADC Data Register1

8.7.6 Register Description

8.7.6.1 0x0000 LRADC Control Register (Default Value: 0x0100_0168)

Offset: 0x0000 Register Name: LRADC_CTRL

Bit Read/Write Default/Hex Description

31:24 R/W 0x1
FIRST_CONVERT_DLY
ADC First Convert Delay Setting
ADC conversion is delayed by n samples.

23:22 R/W 0x0

CHANNEL_SEL
Select the channel that be enabled
00: channel 0 only
01: channel 1 only
10: channel 1 and channel 0

21:20 / / /

19:16 R/W 0x0
CONTINUE_TIME_SELECT
Continuous Mode Time Select
One of 8*(N+1) sample as a valuable sample data.

15:14 / / /
13:12 R/W 0x0 KEY_MODE_SELECT

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1314

8.8 USB2.0 DRD

8.8.1 Overview

The USB2.0 dual-role device (USB2.0 DRD) supports both device and host functions which can
also be configured as a Host-only or Device-only controller. It complies with the USB2.0
Specification.

For saving CPU bandwidth, the DMA interface of the DRD module can also support the external
DMA controller to do the data transfer between the memory and the DRD FIFO. The DRD core
also supports USB power saving functions.

The USB2.0 DRD has the following features:

 One USB2.0 DRD (USB0), with integrated USB 2.0 analog PHY

 Complies with USB2.0 Specification

 USB Host that supports the following:

- Compatible with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0

- Compatible with Open Host Controller Interface (OHCI) Specification, Version 1.0a

- Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s), and Low-Speed (LS,
1.5 Mbit/s)

- Supports only 1 USB Root port shared between EHCI and OHCI

 USB Device that supports the following:

- Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s)

- Supports bi-directional endpoint0 (EP0) for Control transfer

- Up to 10 user-configurable endpoints (EP1 IN/OUT, EP2 IN/OUT, EP3 IN/OUT, EP4
IN/OUT, EP5 IN/OUT) for Bulk transfer, Isochronous transfer and Interrupt transfer

- Up to (8 KB + 64 Bytes) FIFO for all EPs (including EP0)

- Supports interface to an external Normal DMA controller for every EP

 Supports an internal DMA controller for data transfer with memory

 Supports High-Bandwidth Isochronous & Interrupt transfers

 Automated splitting/combining of packets for Bulk transfers

 Supports point-to-point and point-to-multipoint transfer in both Host and Peripheral modes

 Includes automatic PING capabilities

 Soft connect/disconnect function

 Performs all transaction scheduling in hardware

 Power optimization and power management capabilities

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1315

 Device and host controller share an 8K SRAM and a physical PHY

8.8.2 Block Diagram

The following figure shows the block diagram of USB2.0 DRD Controller.

Figure 8-36 USB2.0 DRD Controller Block Diagram

8.8.3 Functional Description

8.8.3.1 External Signals

Table 8-29 USB2.0 DRD External Signals

Signal Name Description Type
USB0-DM USB2.0 Data Signal DM A I/O
USB0-DP USB2.0 Data Signal DP A I/O
USB0-REXT USB2.0 External Reference Resistor AO
VCC33-USB 3.3 V Analog Power Supply for USB2.0 DRD and USB2.0 Host P

VCC33-18-USB
3.3 V/1.8V Analog Power Supply for USB2.0 DRD and USB2.0
Host

P

VDD09-USB 0.9 V USB Digital Power Supply p

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1316

8.8.3.2 Controller and PHY Connection Diagram

Figure 8-37 USB2.0 DRD Controller and PHY Connection Diagram

8.8.4 Register List

There are two groups of registers in USB2.0 DRD.

Module Name Base Address
USB0 (0x0410 0000---0x041F FFFF)
USB_DRD_DEVICE 0x04100000
USB_DRD_HOST 0x04101000

8.8.4.1 USB_DRD_DEVICE Register List

Module Name Base Address
USB_DRD_DEVICE 0x04100000

Register Name Offset Description

USB_EPFIFOn

0x0000+N
*0x0004
(N=0,1,2,3
,4,5)

USB FIFO Entry for Endpoint N

USB_GCS 0x0040 USB Global Control and Status Register
USB_EPINTF 0x0044 USB Endpoint Interrupt Flag Register
USB_EPINTE 0x0048 USB Endpoint Interrupt Enable Register
USB_BUSINTF 0x004C USB Bus Interrupt Flag Register
USB_BUSINTE 0x0050 USB Bus Interrupt Enable Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1390

8.9 USB2.0 HOST

8.9.1 Overview

The USB Host Controller is fully compliant with USB 2.0 Specification, Enhanced Host Controller
Interface (EHCI) Specification Revision 1.0 and Open Host Controller Interface (OHCI)
Specification Release 1.0a.

The USB2.0 host controller includes the following features:

 One USB 2.0 HOST (USB1), with integrated USB 2.0 analog PHY

 Industry-standard AMBA High-Performance Bus (AHB), fully compliant with the AMBA
Specification, Revision 2.0.

 32-bit Little Endian AMBA AHB Slave Bus for Register Access

 32-bit Little Endian AMBA AHB Master Bus for Memory Access

 An internal DMA Controller for data transfer with memory

 Compatible with Enhanced Host Controller Interface (EHCI) Specification, Version 1.0

 Compatible with Open Host Controller Interface (OHCI) Specification, Version 1.0a

 Supports High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s) and Low-Speed (LS, 1.5
Mbit/s) Device

 Supports the UTMI+ Level 3 interface and 8-bit bidirectional data buses

 Supports only 1 USB Root port shared between EHCI and OHCI

8.9.2 Block Diagram

The following figure shows the block diagram of USB2.0 Host Controller.

Figure 8-38 USB2.0 Host Controller Block Diagram

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1391

8.9.3 Functional Description

8.9.3.1 External Signals

Table 8-30 USB2.0 Host External Signals

Signal Name Description Type
USB1-DM USB2.0 Data Signal DM A I/O
USB1-DP USB2.0 Data Signal DP A I/O
USB1-REXT USB2.0 External Reference Resistor AO AO

8.9.3.2 Controller and PHY Connection Diagram

Figure 8-39 USB2.0 Host Controller and PHY Connection Diagram

8.9.4 Register List

Module Name Base Address
USB1 0x04200000

Register Name Offset Description
EHCI Capability Register
E_CAPLENGTH 0x0000 EHCI Capability register Length Register
E_HCIVERSION 0x0002 EHCI Host Interface Version Number Register
E_HCSPARAMS 0x0004 EHCI Host Control Structural Parameter Register
E_HCCPARAMS 0x0008 EHCI Host Control Capability Parameter Register
E_HCSPPORTROUTE 0x000c EHCI Companion Port Route Description
EHCI Operational Register
E_USBCMD 0x0010 EHCI USB Command Register
E_USBSTS 0x0014 EHCI USB Status Register
E_USBINTR 0x0018 EHCI USB Interrupt Enable Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1437

8.10 PCIe2.1&USB3.1 Top System

8.10.1 Overview

The PCIe2.1&USB3.1 top system integrates a PCIe2.1 RC controller and a USB3.1 DRD controller
with a Combo PHY which supports PCIe GEN1 GEN2 and USB3.1 GEN1 speed and is shared
through PIPE interface.

8.10.2 Block Diagram

The following figure shows the block diagram of PCIe2.1&USB3.1 top system.

Figure 8-40 PCIe2.1&USB3.1 Top System Block Diagram

NOTE

This chapter foucuses on the 1 PCIe2.1&USB3.1 combo PHY. For the detailed description of
PCIe2.1 and USB3.1 DRD, please refer to section 8.12 PCIe2.1 and section 8.11 USB3.1 DRD.

8.10.3 Register List

Module Name Base Address
PCIE_USB3_TOP_APP 0x04F00000

Register Name Offset Description

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1441

8.11 USB3.1 DRD

8.11.1 Overview

The USB3.1 DRD is a Dual-Role Device (DRD) controller, which supports both device and host
functions which can also be configured as a host-only or device-only controller, fully compliant
with the USB 3.1 Specification. It can support super-speed (SS, 5-Gbit/s), high-speed (HS,
480-Mbit/s), full-speed (FS, 12-Mbit/s), and low-speed (LS, 1.5-Mbit/s) transfers in Host mode. It
can support super-speed (SS, 5-Gbit/s), high-speed (HS, 480-Mbit/s), and full-speed (FS,
12-Mbit/s) in Device mode. Standard USB transceiver can be used through its UTMI+ interface
and PIPE interface.

The USB3 DRD controller includes the following features:

 Compliant with USB3.1 GEN1 Specification

 One USB 2.0 UTMI+ PHY (USB2)

 One USB3.1 PIPE PHY (USB3)

 USB3.1 DRD Device mode supports the following:

- Super-Speed (SS, 5 Gbit/s) for USB3.1 PHY

- High-Speed (HS, 480 Mbit/s) and Full-Speed (FS, 12-Mbit/s) for USB2.0 PHY

 USB3.1 DRD HOST mode supports the following:

- Super-Speed (SS, 5 Gbit/s) for USB3.1 PHY

- High-Speed (HS, 480 Mbit/s), Full-Speed (FS, 12 Mbit/s) and Low-Speed (LS, 1.5 Mbit/s)
for USB2.0 PHY

 Support Device or Host operation at a time

 AXI interface for DMA operation

 Reading and writing access to Control and Status Registers (CSRs) through AHB Slave
interface

 Up to 10 Endpoints, including bi-directional control Endpoint 0 in Device mode:

- 5 IN Endpoints: User EP1 IN, EP2 IN, EP3 IN, EP4 IN, Control EP0 IN

- 5 OUT Endpoints: User EP1 OUT, EP2 OUT, EP3 OUT, EP4 OUT, Control EP0 OUT

 Simultaneous IN and OUT transfer in Super-Speed mode

 Dual-port interfaces for TX data buffering, RX data prefetching, descriptor caching, and
register caching

 Three RAMs: RX data FIFO RAM, TX data FIFO RAM, and descriptor/register Cache RAM

 Hardware handles all data transfer

 Implements both static and dynamic power reduction techniques at multiple levels

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1442

NOTE

USB2.0 PHY and USB3.1 PHY share the same controller. They cannot be used simultaneously.

8.11.2 Block Diagram

The following figure shows the block diagram of USB3.1 DRD Controller

Figure 8-41 USB3.1 DRD Controller Block Diagram

8.11.3 Functional Description

8.11.3.1 External Signals

Table 8-31 USB3.1 DRD External Signals

Signal Name Description Type
USB2-DM USB2.0 Data Signal DM A I/O
USB2-DP USB2.0 Data Signal DP A I/O
USB2-REXT USB2.0 External Reference Resistor AO
USB3-RXN USB3.1 SuperSpeed Differential Signal of RX (Negative) AI
USB3-RXP USB3.1 SuperSpeed Differential Signal of RX (Positive) AI
USB3-TXN SuperSpeed Differential Signal of TX (Negative) AO
USB3-TXP USB3.1 SuperSpeed Differential Signal of TX (Positive) AO
VCC33-USB-2 3.3 V Power Supply for USB2.0 PHY P
VCC33-18-USB-2 3.3 V/1.8 V Power Supply for USB2.0 PHY P

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1570

8.12 PCIe2.1

8.12.1 Overview

The PCI Express Controller (PCIe) is a general purpose I/O interconnect, which provides low pin
count, high reliability, and high-speed data transfer at rates of up to 5.0 Gbps per lane per
direction.

Complies with PCI Express Base 2.1 Specification

The PCIe controller includes the following features:

 All non-optional features of the PCI Express Base Specification, Revision 2.1

 Supports Gen1(2.5 Gbit/s), Gen2 (5.0 Gbit/s) speed

 Only supports Root Complex (RC) mode

 Up to 1 lane link width

 Configurable max_payload_size and supports 1024 bytes

 Internal Address Translation Unit (iATU) supports 8 inbound and 8 outbound address
translation regions

 Embedded DMA with hardware flow control supports 4 write/read channels.

 MSI with Per-Vector Masking (PVM) and extended message data for MSI

 PCI Express Active State Power Management (ASPM)

 PCI Express Advanced Error Reporting (AER)

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1571

8.12.2 Block Diagram

The following figure shows the functional block diagram of the PCIe.

Figure 8-42 PCIe Block Diagram

The PCIe controller contains the following modules:

Table 8-32 PCIe Module

Module Description

Common Express Port
Logic (CXPL)

This module implements the basic functionality for the PCI Express
physical, link, and transaction layers. The CXPL implements a large
part of the transaction layer logic, all of the data link layer logic,
and the MAC portion of the physical layer, including the link
training and status state machine (LTSSM). The CXPL connects to
the external PHY through the PIPE.

Transmit
Application-Dependent
Module (XADM)

This module implements the application-specific functionality of
the PCI Express transaction layer for packet transmission. Its
functions include:
● TLP Arbitration
● TLP Formation
● Flow Control (FC) Credit checking
The transmit path uses a cut-through architecture. It does not
implement transmit buffering/queues (other than the retry buffer).
The controller maintains an internal Target Completion Lookup
Table to store certain TLP header information from the Rx request.
Your application can use this information for transmitting
completions.

Receive
Application-Dependent
Module (RADM)

This module implements application-specific functionality of the
PCI Express transaction layer for packet reception. Its functions
include:

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1572

Module Description
● Sorting/filtering of received TLPs. The filtering rules and

routing are configurable.
● Buffering and queuing of the received TLPs.
● Routing of received TLP to the controller’s receive interfaces.
The RADMmaintains a Receive Completion Lookup Table (LUT) for
completion tracking and completion-timeout monitoring of Tx
non-posted requests. It indicates a timeout when an expected Rx
completion does not arrive within the timeout period.

Configuration-Dependent
Module (CDM)

This module implements:
● Standard PCI Express configuration space
● Controller-specific register space (Port Logic Registers)

Power Management
Controller (PMC)

This module implements the power management features of the
PCIe controller.

Local Bus Controller
(LBC) and Data Bus
Interface (DBI)

The LBCmodule provides a mechanism for a link partner (in EP
mode only) or a local CPU (through the DBI) to access:
● Internal registers (in the CDM)
● External application registers connected externally to the ELBI

Message Generation
Module (MSG_GEN)

This module transmits messages generated by the controller.

Integrated MSI Receiver
(iMSI-RX)

The AXI bridge provides an integrated MSI reception module to
detect and terminate inbound MSI requests(received on the RX
wire).

Embedded DMA (eDMA)

The RC system CPU, or the EP application CPU, can offload the
transferring of large blocks of data to the embedded DMA
controller1, leaving the CPU free to perform other tasks. You can
configure the DMA to have one to eight read channels and one to
eight write channels.

Internal Address
Translation Unit (iATU)

The PCIe controller uses the iATU to implement a local address
translation scheme that replaces the TLP address and TLP header
fields in the current TLP request header.

8.12.3 Functional Description

8.12.3.1 External Signals

The following table describes the external signals of the PCIe.

Table 8-33 PCIe External Signals

Signal Name Description Type
PCIE-REF-CLKN PCIe2.1 Differential Signal REFCLK (Negative) A I/O
PCIE-REF-CLKP PCIe2.1 Differential Signal REFCLK (Positive) A I/O
PCIE-REXT PCIe2.1 External Reference Resistor AO

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1573

Signal Name Description Type
PCIE-RX0-DN PCIe2.1 Differential Signal of RX (Negative) A I/O
PCIE-RX0-DP PCIe2.1 Differential Signal of RX (Positive) A I/O
PCIE-TX0-DN PCIe2.1 Differential Signal of TX (Negative) A I/O
PCIE-TX0-DP PCIe2.1 Differential Signal of TX (Positive) A I/O
PCIE0-PERSTN PCIe2.1 Warm Reset O
PCIE0-WAKEN PCIe2.1 Wake Up I
PCIE0-CLKREQN PCIe2.1 Clock Request from PCIe Peripheral I
VCC18-PCIE 1.8 V Power Supply for PCIe2.1 P
VDD09-PCIE 0.9 V Power Supply for PCIe2.1 P

8.12.3.2 Clock Sources

The following table describes the clock sources of the PCIe.

Table 8-34 PCIe Clock Sources

Clock Sources Description Module
USB3_PCIE_REF_CLK 24 MHz, USB3.1 DRD&Pcie2.1 PHY reference clock.

CCU

AUX_CLK 24 MHz, working clock in low power mode of the PCIe.
MBUS_CLK 600 MHz, PCIe AXI master/slave bus clock.
AHB_CLK 200 MHz, PCIe bus clock.

PIPE_CLK
62.5 MHz/ 125MHz, normal working clock for the PCIe
controller operating in Gen1/Gen2mode.

8.12.3.3 PCIe Reference Clock

PCIe reference clock is a 100M differential clock supplied for the PCIe PHY. There are two clock
sources.

 From Internal SoC

Configure PHY to use internal clock and enable the clock output via software. The
REFCLKP/REFCLKN signal of PCIe controller serves as output signal and provides 100M
differential clock for external EP.

 From External Clock Generator

Configure PHY to use external clock and disable the clock output via software. The
REFCLKP/REFCLKN signal of PCIe controller serves as input signal and the external clock
generator provides 100M differential clock for PHY.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1574

8.12.3.4 PCIe Memory Mapping

The address space of PCIe controller can be partitioned into three spaces.

 Core Configuration Space (CCS): The configuration register space of the PCIe controller itself.
It is also the standartd configuration register space defined by the PCIe specification.

 User Defined Space (UDS): The custom register space for the PCIe controller itself.

 Slave Command Space (SCS): Address space for configuraion transaction and memory
transaction. The read and write operations of this space will be transformed by the PCIe
controller into configuration read and write transactions or memory read and write
transactions in PCIe domain. The PCIe command space segmentation is 0x20000000-
0x2FFFFFFF.

8.12.3.5 ATU Operation

ATU is an address translation unit in PCIe controller and is used for transaction transformation
and address translation. There are two types of ATU: Outbound ATU and Inbound ATU.

Outbound ATU

Outbound ATU is used to transform the read/write operation in CPU domain of the original
address space into the read/write transaction in PCIe domain of the target address space. If the
Outbound ATU is used, the original address in the CPU domain will be translated into another
different address in the PCIe domain. If the Outbound ATU is not used, the PCIe controller will
not perform address translation. The read/write operation initiated in the CPU domain will be
transformed into the read/write transaction at the same address in the PCIe domain.

The following shows an example:

 When Outbound ATU is used, set address Region N in the CPU domain to be translated into
Region K in PCIe domain. The read/write operation initiated at address Region N (CPU
domain) will be transformed into the read/write transaction at address Region K (PCIe
domain).

 When Outbound ATU is not used, read/write operation initiated at address Region N (CPU
domain) will be transformed into the read/write transaction at address Region N (PCIe
domain).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1575

Figure 8-43 Outbound ATU

Inbound ATU

Inbound ATU is used to transform the read/write transaction in the PCIe domain of the original
address space into the read/write operation in the CPU domain of the target address space. If
Inbound ATU is used, the original address in the PCIe domain will be translated into another
different address in the CPU domain. If the Inbound ATU is not used, the PCIe controller will not
perform address translation. The read/write transaction initiated in the PCIe domain will be
transformed into the read/write operation at the same address in the CPU domain.

The following shows an example:

 When Inbound ATU is used, set address Region N in the PCIe domain to be translated into
Region K in the CPU domain. The read/write transaction initiated at address Region N (PCIe
domain) will be transformed into the read/write operation at address Region K (CPU
domain).

 When Inbound ATU is not used, read/write transaction initiated at address Region N (PCIe
domain) will be transformed into the read/write operation at address Region N (CPU
domain).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1576

Figure 8-44 Inbound ATU

8.12.3.6 DMA Operation

There is a private DMA with read channels and write channels in the PCIe controller. The
following figure deiscribes the DMA write and read process.

Figure 8-45 DMA Operation

 DMA Write Channel

the DMA write channel is used for data transfer from local bus address space to the address
space in the PCIe domain. First, DMA controller reads data from the local bus address space
and writes them to the address space in the CPU domain. Then, the PCIe controller
transforms the write operation initiated by DMA into a write transaction in the PCIe domain
and writes data to the destination address space in the PCIe domain.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1577

 DMA Read Channel

The DMA read channel is used for data transfer from the address space in the PCIe domain to
the local bus address space such as DRAM address space. If a read operation is initiated by
DMA in the original address space of the CPU domain, the PCIe controller will transform the
read operation into a read transaction in the PCIe domain and write data to the local bus
address space.

8.12.3.7 MSI Operation

Message Signaled Interrupt (MSI) is a kind of mechanism that Endpoints send interrupt requests
to the CPU connected with the Root Complex, which uses memory write transaction. The
transaction message for transmitting interrupt information is MSI message.

Assume an Endpoint needs to send a MSI interrupt request to CPU. First, the Endpoint needs to
initiate a memory write transaction in MSI address of PCIe domain, which will be transformed
into a MSI interrupt signal to CPU by the PCIe controller after the transaction is detected.
Software obtains the Endpoint sending interrupt request and its interrrupt vector according to
the MSI message.

8.12.4 Register List

Module Name Base Address
PCIE 0x04800000

Register Class Offset
User Defined Registers 0x00400000 - 0x0047FFFF

Register Name Offset Description
MSTR_AWMISC_INFO_0 0x0100 PCIE AXI Master Write Misc Information Register0
MSTR_AWMISC_INFO_1 0x0104 PCIE AXI Master Write Misc Information Register1
MSTR_AWMISC_INFO_HDR_
34DW_0

0x0108
PCIE AXI Master Write Misc Information Header
Register0

MSTR_AWMISC_INFO_HDR_
34DW_1

0x010C
PCIE AXI Master Write Misc Information Header
Register1

MSTR_AWMISC_INFO_OTHE
R

0x0110 PCIE AXI Master Write Misc Information Other Register

MSTR_ARMISC_INFO_0 0x0120 PCIE AXI Master Read Misc Information Register0
MSTR_ARMISC_INFO_1 0x0124 PCIE AXI Master Read Misc Information Register1
MSTR_ARMISC_INFO_OTHE
R

0x0130 PCIE AXI Master Read Misc Information Other Register

MSTR_BMISC_INFO 0x0150
PCIE AXI Master Write Response Misc Information
Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1611

8.13 TwoWire Interface (TWI)

8.13.1 Overview

The Two Wire Interface (TWI) provides an interface between a CPU and any TWI-bus-compatible
device that connects via the TWI bus. The TWI is designed to be compatible with the standard I2C
bus protocol. The communication of the TWI is carried out by a byte-wise mode based on
interrupt polled handshaking. Each device on the TWI bus is recognized by a unique address and
can operate as either transmitter or receiver, a device connected to the TWI bus can be
considered as master or slave when performing data transfers. Note that a master device is a
device that initiates a data transfer on the bus and generates the clock signals to permit the
transfer. During this transfer, any device addressed by this master is considered a slave.

The TWI has the following features:

 Up to 9 TWI controllers

- 6 TWI controllers in CPUX domain: TWI0, TWI1, TWI2, TWI3, TWI4, and TWI5

- 3 TWI controllers in CPUS domain: S_TWI0, S_TWI1, and S_TWI2

 Compliant with I2C bus standard

 7-bit and 10-bit device addressing modes

 Standard mode (up to 100 Kbit/s) and fast mode (up to 400 Kbit/s)

 Supports general call and start byte

 Master mode supports the following:

- Bus arbitration in the case of multiple master devices

- Clock synchronization and bit and byte waiting

- Packet transmission and DMA

 Slave mode supports Interrupt on address detection

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1612

8.13.2 Block Diagram

the following figure shows the block diagram of TWI.

Figure 8-46 TWI Block Diagram

TWI contains the following sub-blocks:

Table 8-35 TWI Sub-blocks

Sub-block Description
RESET Module reset signal
INT Module output interrupt signal
CFG_REG Module configuration register in TWI
PE Packet encoding/decoding
CCU Module clock controller unit

SEND_FIFO
The register address bytes and the written data bytes are buffered
in SEND_FIFO

RECV_FIFO The read data bytes are buffered in RECV_FIFO

The controller includes TWI engine and TWI driver. Each time the TWI engine sends a START
signal, a STOP signal, or a BYTE data, or a corresponding ACK, the TWI engine will generate an
interrupt, and wait for the CPU to process and clear the interrupt before the next START, STOP,
or BYTE, ACK transmission can be performed. Therefore, when a device communication is
completed, many interrupts will be generated, and the CPU needs to wait for the previous
interrupt before it can configure the next one. The TWI driver defines each communication with
the device as a packet transmission. The CPU can directly configure the slave address, register
address and data transmission for one or more package transmissions without waiting for
interruption, then start the TWI driver, and the TWI driver can control the TWI engine to complete
a pre-configured communication, and report an interrupt to the CPU after completion.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1613

8.13.3 Functional Description

8.13.3.1 External Signals

The following table describes the external signals of the TWI. The TWIn-SCK and TWIn-SDA are
bidirectional I/O, when the TWI is configured as a master device, the TWIn-SCK is an output pin;
when the TWI is configurable as a slave device, the TWIn-SCK is an input pin. When using TWI, the
corresponding PADs are selected as TWI function via section 8.5 GPIO.

Table 8-36 TWI External Signals

Signal Name Description Type
TWI0-SCK TWI0 Serial Clock Signal I/O
TWI0-SDA TWI0 Serial Data Signal I/O
TWI1-SCK TWI1 Serial Clock Signal I/O
TWI1-SDA TWI1 Serial Data Signal I/O
TWI2-SCK TWI2 Serial Clock Signal I/O
TWI2-SDA TWI2 Serial Data Signal I/O
TWI3-SCK TWI3 Serial Clock Signal I/O
TWI3-SDA TWI3 Serial Data Signal I/O
TWI4-SCK TWI4 Serial Clock Signal I/O
TWI4-SDA TWI4 Serial Data Signal I/O
TWI5-SCK TWI5 Serial Clock Signal I/O
TWI5-SDA TWI5 Serial Data Signal I/O
S-TWI0-SCK S-TWI0 Serial Clock Signal I/O
S-TWI0-SDA S-TWI0 Serial Data Signal I/O
S-TWI1-SCK S-TWI1 Serial Clock Signal I/O
S-TWI1-SDA S-TWI1 Serial Data Signal I/O
S-TWI2-SCK S-TWI1 Serial Clock Signal I/O
S-TWI2-SDA S-TWI1 Serial Data Signal I/O

8.13.3.2 Clock Sources

Each TWI controller has an input clock source. The following table describes the clock sources
for TWI. After selecting a proper clock, users must open the gating of TWI and release the
corresponding reset bit.

For more details on the clock setting, configuration, and gating information, see section 2.5
Clock Controller Unit (CCU) and section 2.11 Power Reset Clock Management (PRCM).

Table 8-37 TWI Clock Sources

Clock Sources Descsription Module
APB1 Bus TWI clock source. Refer to CCU for details on APB1. CCU
APBS1 Bus S_TWI clock source. Refer to PRCM for details on APBS1. PRCM

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1614

8.13.3.3 Write/Read Timing in Standard and Extended Addressing Mode

This section is the 7-bit/10-bit addressing mode of the entire TWI protocol to read and write
device registers. It can be achieved by directly using the TWI engine or using the TWI driver to
control the TWI engine.

The following figure describes the write timing in 7-bit standard addressing mode.

Figure 8-47 Write Timing in 7-bit Standard Addressing Mode

The following figure describes the read timing in 7-bit standard address mode.

Figure 8-48 Read Timing in 7-bit Standard Addressing Mode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1615

The following figure describes the write timing in 10-bit extended address mode.

Figure 8-49 Write Timing in 10-bit Extended Addressing Mode

The following figure describes the read timing in 10-bit extended address mode.

Figure 8-50 Read Timing in 10-bit Extended Addressing Mode

8.13.3.4 Write/Read Packet Transmission of TWI Driver

The TWI driver is only supported for master mode. When the TWI works in master mode, the TWI
driver drives the TWI engine for one or more packet transmission instead of the CPU host. Packet
transmission is defined in the following figures. The register address bytes and the written data
bytes are buffered in SEND_FIFO, the read data bytes are buffered in RECV_FIFO.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1616

Figure 8-51 TWI Driver Write Packet Transmission

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1617

Figure 8-52 TWI Driver Read Packet Transmission

8.13.3.5 Master and Slave Mode of TWI Engine

In Master mode, the CPU host controls the TWI engine by writing command and data to its
registers. The TWI engine transmits an interrupt to CPU when each time a byte transfer is done or
a START/STOP command is detected. The CPU host can poll the status register if the interrupt
mechanism is not disabled by the CPU host.

When the CPU host wants to start a bus transfer, it initiates a bus START to enter the master
mode by setting TWI_CNTR[M_STA] to high. The TWI engine will assert the INT line and
TWI_CNTR[INT_FLAG] to indicate a completion for the START command and each consequent
byte transfer. At each interrupt, the CPU host needs to check the current state by the TWI_STAT

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1618

register. A transfer must conclude with the STOP command by setting TWI_CNTR[M_STP] to
high.

In Slave mode, the TWI engine also constantly samples the bus and look for its own slave address
during addressing cycles. Once a match is found, it is addressed, and the TWI engine interrupts
the CPU host with the corresponding status. Upon request, the CPU host should read the status,
read/write the TWI_DATA register, and set the TWI_CNTR register. After each byte transfer, a
slave device always stops the operation of the remote master by holding the next low pulse on
the SCL line until the CPU host responds to the status of the previous byte transfer or START
command.

8.13.3.6 Generation of Repeated Start

After the data transfer, if the master still requires the bus, it can signal another Start followed by
another slave address without signaling a Stop.

8.13.3.7 Programming State Diagram

Figure 8-53 shows the TWI programming state diagram. For the value between two states, see the
TWI_STAT register in section 8.13.6.5.

M_SEND_S: master sends START signal;

M_SEND_ADDR: master sends slave address;

M_SEND_XADD: master sends slave extended address;

M_SEND_SR: master repeated start;

M_SEND_DATA: master sends data;

M_SEND_P: master sends STOP signal;

M_RECV_DATA: master receives data;

ARB_LOST: Arbitration lost;

C_IDLE: Idle.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1619

Figure 8-53 TWI Programming State Diagram

8.13.4 Programming Guidelines

The TWI controller operates in an 8-bit data format. The data on the TWI_SDA line is always 8 bits
long. At first, the TWI controller sends a start condition. When in the addressing formats of 7-bit,
the TWI sends out an 8-bit message which includes 7 MSB slave address and 1 LSB read/write
flag. The least significant of the salve address indicates the direction of transmission. When the
TWI works in 10-bit slave address mode, the operation will be divided into two steps, for details
on the operation, refer to register description in Section 8.13.6.1 and 8.13.6.2.

The following takes the TWI module in the CPUX domain as an example.

8.13.4.1 Initialization for TWI Engine

To initialize the TWI engine, perform the following steps:

Step 1 Configure corresponding GPIO multiplex function as TWI mode.

Step 2 For TWIn, set TWI_BGR_REG[TWIn_GATING] in CCU module to 0 to close TWIn clock.

Step 3 For TWIn, set TWI_BGR_REG[TWIn_RST] in CCU module to 0, then set to 1 to reset TWIn.

Step 4 For TWIn, set TWI_BGR_REG[TWIn_GATING] in CCU module to 1 to open TWIn clock.

Step 5 Configure TWI_CCR[CLK_M] and TWI_CCR[CLK_N] to get the needed rate (The clock
source of TWI is from APB1).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1620

Step 6 Configure TWI_CNTR[BUS_EN] and TWI_CNTR[A_ACK], when using interrupt mode, set
TWI_CNTR[INT_EN] to 1, and register the system interrupt through GIC module. In slave
mode, configure TWI_ADDR and TWI_XADDR registers to finish TWI initialization
configuration.

8.13.4.2 Writing Data Operation for TWI Engine

To write data to the device, perform the following steps:

Step 1 Clear TWI_EFR register, and configure TWI_CNTR[M_STA] to 1 to transmit the START
signal.

Step 2 After the START signal is transmitted, the first interrupt is triggered, then write device ID
to TWI_DATA (For a 10-bit device ID, firstly write the first byte ID, secondly write the
second byte ID in the next interrupt).

Step 3 The Interrupt is triggered again after device ID transmission completes, write device
data address to be read to TWI_DATA (For a 16-bit address, firstly write the first-byte
address, secondly write the second-byte address).

Step 4 Interrupt is triggered after data address transmission completes, write data to be
transmitted to TWI_DATA (For consecutive write data operation, every byte
transmission completion triggers interrupt, during interrupt write the next byte data to
TWI_DATA).

Step 5 After transmission completes, write TWI_CNTR[M_STP] to 1 to transmit the STOP signal
and end this write-operation.

8.13.4.3 Reading Data Operation for TWI Engine

To read data from the device, perform the following steps:

Step 1 Clear TWI_EFR register, and set TWI_CNTR[A_ACK] to 1, and configure TWI_CNTR[M_STA]
to 1 to transmit the START signal.

Step 2 After the START signal is transmitted, the first interrupt is triggered, then write device ID
to TWI_DATA (For a 10-bit device ID, firstly write the first-byte ID, secondly write the
second-byte ID in the next interrupt).

Step 3 The Interrupt is triggered again after device ID transmission completes, write device
data address to be read to TWI_DATA (For a 16-bit address, firstly write the first-byte
address, secondly write the second-byte address).

Step 4 The Interrupt is triggered after data address transmission completes, write
TWI_CNTR[M_STA] to 1 to transmit new START signal, and after interrupt triggers, write
device ID to TWI_DATA to start read-operation.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1621

Step 5 After device address transmission completes, each receive completion will trigger an
interrupt, in turn, read TWI_DATA to get data, when receiving the previous interrupt of
the last byte data, clear [A_ACK] to stop acknowledge signal of the last byte.

Step 6 Write TWI_CNTR[M_STP] to 1 to transmit the STOP signal and end this read-operation.

8.13.4.4 Initialization for TWI Driver

To initialize the TWI driver, perform the following steps:

Step 1 Configure corresponding GPIO multiplex function as TWI mode.

Step 2 For TWIn, set TWI_BGR_REG[TWIn_GATING] in CCU module to 0 to close TWIn clock.

Step 3 For TWIn, set TWI_BGR_REG[TWIn_RST] in CCU module to 0, then set to 1 to reset TWIn.

Step 4 For TWIn, set TWI_BGR_REG[TWIn_GATING] in CCU module to 1 to open TWIn clock.

Step 5 Set TWI_DRV_CTRL[TWI_DRV_EN] to 1 to enable the TWI driver.

Step 6 Configure TWI_DRV_BUS_CTRL[CLK_M] and TWI_DRV_BUS_CTRL[CLK_N] to get the
needed rate (The clock source of TWI is from APB1).

Step 7 Set TWI_DRV_CTRL[RESTART_MODE] to 0 and [READ_TRAN_MODE] to 1, set
TWI_DRV_INT_CTRL[TRAN_COM_INT_EN] to 1.

Step 8 When using DMA for data transmission, set TWI_DRV_DMA_CFG[DMA_RX_EN] and
TWI_DRV_DMA_CFG[DMA_TX_EN] to 1, and configure TWI_DRV_DMA_CFG[RX_TRIG] and
TWI_DRV_DMA_CFG[TX_TRIG] to set the thresholds of RXFIFO and TXFIFO.

8.13.4.5 Writing Packet Transmission for TWI Driver

To write package to the device, perform the following steps:

Step 1 Configure TWI_DRV_SLV[SLV_ID] to set the device ID, and configure TWI_DRV_SLV[CMD]
to 0 to set the write operation.

Step 2 Configure TWI_DRV_FMT[ADDR_BYTE] according to the address width of the device
register, and TWI_DRV_FMT[DATA_BYTE] according to the written data count in a
packet.

Step 3 Configure TWI_DRV_CFG[PACKET_CNT] to set the written packet number.

Step 4 Configure DMA channel, including TWI TXFIFO, device register address, and the written
data.

Step 5 Set [START_TRAN] to 1 to start TWI Driver transmission.

Step 6 When TWI driver transmission completes, the interrupt is triggered, it indicates that the
write packet transmission ends.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1622

8.13.4.6 Reading Packet Transmission for TWI Driver

Step 1 To read package from the device, perform the following steps:

Step 2 Configure TWI_DRV_SLV[SLV_ID] to set the device ID, and configure TWI_DRV_SLV[CMD]
to 1 to set the read operation.

Step 3 Configure TWI_DRV_FMT[ADDR_BYTE] according to the address width of the device
register, and TWI_DRV_FMT[DATA_BYTE] according to the read data count in a packet.

Step 4 Configure TWI_DRV_CFG[PACKET_CNT] to set the read packet number.

Step 5 Configure DMA channel, including TWI TXFIFO, TWI RXFIFO, device register address and
the read data.

Step 6 Set [START_TRAN] to 1 to start TWI Driver transmission.

Step 7 When TWI driver transmission completes, the interrupt is triggered, it indicates that the
read packet transmission ends.

8.13.5 Register List

Module Name Base Address Comments
TWI0 0x0250 2000
TWI1 0x0250 2400 TWI1 register is the same with TWI0.
TWI2 0x0250 2800 TWI2 register is the same with TWI0.
TWI3 0x0250 2C00 TWI3 register is the same with TWI0.
TWI4 0x0250 3000 TWI4 register is the same with TWI0.
TWI5 0x0250 3400 TWI5 register is the same with TWI0.
S_TWI0 0x0708 1400 R-TWI0 register is the same with TWI0.
S_TWI1 0x0708 1800 R-TWI1 register is the same with TWI0.
S_TWI2 0x0708 1C00 R-TWI2 register is the same with TWI0.

Register Name Offset Description
TWI_ADDR 0x0000 TWI Slave Address Register
TWI_XADDR 0x0004 TWI Extended Slave Address Register
TWI_DATA 0x0008 TWI Data Byte Register
TWI_CNTR 0x000C TWI Control Register
TWI_STAT 0x0010 TWI Status Register
TWI_CCR 0x0014 TWI Clock Control Register
TWI_SRST 0x0018 TWI Software Reset Register
TWI_EFR 0x001C TWI Enhance Feature Register
TWI_LCR 0x0020 TWI Line Control Register
TWI_DRV_CTRL 0x0200 TWI_DRV Control Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1637

8.14 PWM

8.14.1 Overview

The Pulse Width Modulation (PWM) module can output the configurable PWM waveforms and
measure the external input waveforms.

The PWM has the following features:

 Up to 30 PWM channels and 4 PWM controllers: PWM [19:0] in CPUX domain, S-PWM [9:0] in
CPUS domain

- PWM [15:0] for PWMCTRL0 controller

- PWM [19:16] for PWMCTRL1 controller

- S-PWM [1:0] for S_PWMCTRL controller

- S-PWM [9:2] for MCU_PWMCTRL controller

 Maximum 16 independent PWM channels for PWM controller

- Supports PWM continuous mode output

- Supports PWM pulse mode output, and the pulse number is configurable

- Output frequency range:

 0 to 24 MHz (when the clock source is DCXO24M)

 0 to 100 MHz (when the clock source is APB1 clock)

- Various duty-cycle: 0% to 100%

- Minimum resolution: 1/65536

 Maximum 8 complementary pairs output

- The pairing methods for each controller are as follows. The components are internal
PWM channels:

 Maximum 8 pairs for PWMCTRL0:

PWM0 + PWM1, PWM2 + PWM3, PWM4 + PWM5, PWM6 + PWM7, PWM8 + PWM9,
PWM10 + PWM11, PWM12 + PWM13, PWM14 + PWM15

 Maximum 2 pairs for PWMCTRL1:

PWM0+PWM1, PWM2+PWM3

 Maximum 1 pair for S_PWMCTRL:

PWM0+PWM1

 Maximum 4 pairs for MCU_PWMCTRL:

PWM0+PWM1, PWM2+PWM3, PWM4+PWM5, PWM6+PWM7

- Supports dead-zone generator, and the dead-zone time is configurable

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1638

 Maximum 4 group of PWM channel output for controlling stepping motors

- Supports any plural channels to form a group, and output the same duty-cycle pulse

- In group mode, the relative phase of the output waveform for each channel is
configurable

 Maximum 16 channels capture input

- Supports rising edge detection and falling edge detection for input waveform pulse

- Supports pulse-width measurement for input waveform pulse

The basic features for four PWM controllers are as follows:

PWM controller Domain Channels Pairs

PWMCTRL0 CPUX 16

8 PWM pairs
PWM01 (PWM0+PWM1)
PWM23 (PWM2+PWM3)
PWM45 (PWM4+PWM5)
PWM67 (PWM6+PWM7)
PWM89 (PWM8+PWM9)
PWMab (PWM10+PWM11)
PWMcd (PWM12+PWM13)
PWMef (PWM14+PWM15)

PWMCTRL1 CPUX 4
2 PWM pairs
PWM01 (PWM0+PWM1)
PWM23 (PWM2+PWM3)

S_PWMCTRL CPUS 2
1 PWM pair
PWM01 (PWM0+PWM1)

MCU_PWMCTRL CPUS 8

4 PWM pair
PWM01 (PWM0+PWM1)
PWM23 (PWM2+PWM3)
PWM45 (PWM4+PWM5)
PWM67 (PWM6+PWM7)

NOTE

For the corresponding relationship between the channels of each PWM controller and the
external signals, please refer to section 8.14.3.1 External Signals.

8.14.2 Block Diagram

The PWM includes multi PWM channels. Each channel can generate different PWM waveform by
the independent counter and duty-ratio configuration register. Each PWM pair shares one group
of clock and dead-zone generator to generate PWMwaveform.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1639

Figure 8-54 PWM Block Diagram

Each PWM pair consists of 1 clock module, 2 timer logic module, and 1 programmable dead-zone
generator.

8.14.3 Functional Description

8.14.3.1 External Signals

The following table describes the external signals of the PWM.

Table 8-38 PWM External Signals

Signal Description Type
PWMCTRL0
PWM0 PWM channel0 in PWMCTRL0 I/O
PWM1 PWM channel1 in PWMCTRL0 I/O
PWM2 PWM channel2 in PWMCTRL0 I/O
PWM3 PWM channel3 in PWMCTRL0 I/O
PWM4 PWM channel4 in PWMCTRL0 I/O
PWM5 PWM channel5 in PWMCTRL0 I/O
PWM6 PWM channel6 in PWMCTRL0 I/O
PWM7 PWM channel7 in PWMCTRL0 I/O
PWM8 PWM channel8 in PWMCTRL0 I/O
PWM9 PWM channel9 in PWMCTRL0 I/O
PWM10 PWM channel10 in PWMCTRL0 I/O
PWM11 PWM channel11 in PWMCTRL0 I/O
PWM12 PWM channel12 in PWMCTRL0 I/O
PWM13 PWM channel13 in PWMCTRL0 I/O

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1640

Signal Description Type
PWM14 PWM channel14 in PWMCTRL0 I/O
PWM15 PWM channel15 in PWMCTRL0 I/O
PWMCTRL1
PWM16 PWM channel0 in PWMCTRL1 I/O
PWM17 PWM channel1 in PWMCTRL1 I/O
PWM18 PWM channel2 in PWMCTRL1 I/O
PWM19 PWM channel3 in PWMCTRL1 I/O
S_PWMCTRL
S-PWM0 PWM channel0 in S_PWMCTRL I/O
S-PWM1 PWM channel1 in S_PWMCTRL I/O
MCU_PWMCTRL
S-PWM2 PWM channel0 in MCU_PWMCTRL I/O
S-PWM3 PWM channel1 in MCU_PWMCTRL I/O
S-PWM4 PWM channel2 in MCU_PWMCTRL I/O
S-PWM5 PWM channel3 in MCU_PWMCTRL I/O
S-PWM6 PWM channel4 in MCU_PWMCTRL I/O
S-PWM7 PWM channel5 in MCU_PWMCTRL I/O
S-PWM8 PWM channel6 in MCU_PWMCTRL I/O

8.14.3.2 Clock Sources

The following table describes the clock sources of the PWM controllers.

Table 8-39 PWM clock sources

PWM Clock Sources Description Module
PWMCTRL0
PWMCTRL1

HOSC 24 MHz, external clock.
CCU

APB1_CLK 24 MHz, PWM bus clock.

S_PWMCTRL
MCU_PWMCTRL

CLK24M By default, CLK24M is 24 MHz.
PRCMCLK32K By default, CLK32K is 32 kHz.

CLK_RC By default, CLK_RC is 16 MHz.

8.14.3.3 Typical Application

 Suitable for display device, such as LCD

 Suitable for electric motor control

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1641

8.14.3.4 Clock Controller

Using PWM01 as an example. The other PWM pairs are the same as PWM01.

Figure 8-55 PWM01 Clock Controller Diagram

The clock controller of each PWM pair includes clock source select (PWM01_CLK_SRC), 1-256
scaler (PWM01_CLK_DIV_M). Each PWM channel has the secondary frequency division
(PWM_PRESCAL_K), clock source bypass (PWMx_CLK_BYPASS) and clock switch
(PWMx_CLK_GATING).

The clock sources have HOSC and APB0. The HOSC comes from the external high-frequency
oscillator; the APB0 is APB0 bus clock.

The bypass function of the clock source is that the clock source directly accesses PWM output,
the PWM output waveform is the waveform of the clock controller output. The BYPASS gridlines
in the above figure indicate the bypass function of the clock source, see Figure 8-56 for the details
about implement. At last, the output clock of the clock controller is sent to the PWM logic
module.

8.14.3.5 PWMOutput

Taking PWM01 as an example, Figure 8-56 indicates the PWM01 output logic diagram. The logic
diagrams of other PWM pairs are the same as PWM01.

The timer logic module of PWM consists of one 16-bit up-counter (PCNTR) and three 16-bit
parameters (PWM_ENTIRE_CYCLE, PWM_ACT_CYCLE, PWM_COUNTER_START). The
PWM_ENTIRE_CYCLE is used to control the PWM cycle, the PWM_ACT_CYCLE is used to control
the duty-cycle, the PWM_COUNTER_START is used to control the output phase (multi-channel
synchronization work requirements).

The PWM_ENTIRE_CYCLE and the PWM_ACT_CYCLE support the cache load, after PWM output is
enabled, the register values of the PWM_ENTIRE_CYCLE and the PWM_ACT_CYCLE can be
changed anytime, the changed value caches into the cache register. When the PCNTR counter
outputs a period of PWM waveform, the value of the cache register can be updated for the PCNTR

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1642

control. The purpose of the cache load is to avoid the unstable PWM output waveform with
glitches when updating the values of the PWM_ENTIRE_CYCLE and PWM_ACT_CYCLE.

The PWM supports cycle and pulse waveform output.

Cycle mode: The PWM outputs the setting PWM waveform continually, that is, the output
waveform is a continuous PWM square wave.

Pulse mode: After setting the PWM_PUL_NUM parameter, the PWM outputs (PWM_PULNUM+1)
periods of PWMwaveform, that is, the waveform with several pulses are output.

Figure 8-56 PWM01 Output Logic Module Diagram

8.14.3.6 Pulse Mode and Cycle Mode

The PWM output supports pulse mode and cycle mode. PWM in pulse mode outputs
PCR[PWM_PUL_NUM] +1 cycles waveform, but PWM in cycle mode outputs continuous
waveform. The following figure shows the PWM output waveform in pulse mode and cycle mode.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1643

Figure 8-57 PWM0 Output Waveform in Pulse Mode and Cycle Mode

Each channel of the PWM module supports the PWM output of pulse mode and cycle mode, the
active state of the PWM output waveform can be programmed to control.

When PCR[PWM_MODE] is 0, the PWM0 outputs in cycle mode. When PCR[PWM_MODE] is 1, the
PWM0 outputs in pulse mode.

Specifically, in pulse mode, after the PWM0 channel enabled, PCR[PWM_PUL_START] needs to be
set to 1 when the PWM0 needs to output pulse waveform, after completed the output,
PCR[PWM_PUL_START] can be cleared to 0 by hardware. The next setting 1 can be operated after
PCR[PWM_PUL_START] is cleared.

8.14.3.7 Complementary Pair Output

Every PWM pair supports complementary pair output and PWM pair with dead-time. the
following figure shows the complementary pair output of PWM01.

Figure 8-58 PWM01 Complementary Pair Output

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1644

The complementary pair output needs to satisfy the following conditions:

 PWM0 and PWM1 have the same clock divider, frequency, duty-cycle, and phase

 PWM0 and PWM1 have an opposite active state

 Enable the clock gating of PWM0 and PWM1 at the same time

 Enable the waveform output of PWM0 and PWM1 at the same time

8.14.3.8 Dead-time Generator

Every PWM pair has a programmable dead-time generator. When the dead-time function of the
PWM pair enabled, the PWM01 output waveform is decided by PWM timer logic and DeadZone
Generator. the following figure shows the output waveform.

Figure 8-59 Dead-time Output Waveform

The PWM waveform before the insertion of dead-time indicates a complementary waveform pair
of non-inserted dead-time in Dead Zone Generator 01.

The PWM waveform after the insertion of dead-time indicates a non-complementary PWM
waveform pair inserted dead-time in a complementary waveform pair of Dead Zone Generator
01. The PWM waveform pair at last outputs to PWM0 pin and PWM1 pin.

For the complementary pair of Dead Zone Generator 01, the principle of inserting dead-time is
that to insert dead-time as soon as the rising edge came. If the high level time for mark② in the
above figure is less than dead-time, then dead-time will override the high level. The setting of
dead-time needs to consider the period and the duty-cycle of the output waveform. The
dead-time formula is defined as follows:

Dead-time = (PWM01_CLK / PWM0_PRESCALE_K)-1 * PDZINTV01

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1645

8.14.3.9 PWM Group Mode

Taking PWM Group0 as an example. The same group of PWM channel is selected to work by
PGR0.CS; the same PWM_ENTIRE_CYCLE, PWM_ACT_CYCLE are set by the same clock
configuration; the different PWM_COUNTER_START can output PWM group signals with the
same duty-cycle and the different phase.

Figure 8-60 Group 0-3 PWM Signal Output

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1646

8.14.3.10 Capture Input

Figure 8-61 PWM01 Capture Logic Module Diagram

Besides the timer logic module of every PWM channel generates PWM output, it can be used to
capture the rising edge and the falling edge of the external clock. Using the PWM0 channel as an
example, the PWM0 channel has one CFLR0 and one CRLR0 for capturing up-counter value on the
falling edge and rising edge, respectively. You can calculate the period of the external clock by
CFLR0 and CRLR0.

Thigh-level = (PWM01_CLK / PWM0_PRESCALE_K)-1 * CRLR0

Tlow-level = (PWM01_CLK / PWM0_PRESCALE_K)-1* CFLR0

Tperiod = Thigh-level + Tlow-level

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1647

Figure 8-62 PWM0 Channel Capture Timing

When the capture input function of the PWM0 channel is enabled, the PCNTR of the PWM0
channel starts to work.

When the timer logic module of PWM0 captures a rising edge, the current value of the up-counter
is locked to CRLR0 and CCR0[CRLF] is set to 1. If CRIE0 is 1, then CRIS0 is set to 1, the PWM0
channel sends interrupt requests, and the up-counter is loaded to 0 and continues to count. If
CRIE0 is 0, the timer logic module of PWM0 captures a rising edge, CRIS0 cannot be set to 1, the
up-counter is not loaded to 0.

When the timer logic module of PWM0 captures one falling edge, the current value of PCNTR is
locked to CFLR0 and CCR0[CFLF] is set to 1. If CFIE0 is 1, then CFIS0 is set to 1, the PWM0 channel
sends interrupt requests, and the up-counter is loaded to 0 and continues to count. If CFIE0 is 0,
the timer logic module of PWM0 captures a falling edge, CFIS0 cannot be set to 1, the up-counter
is not loaded to 0.

8.14.4 Programming Guidelines

The following working mode takes PWM01 as an example, other PWM pairs and PWM01 are
consistent.

8.14.4.1 Configuring Clock

Step 1 PWM gating: When using PWM, write 1 to PCGR[PWMx_CLK_GATING].

Step 2 PWM clock source select: Set PCCR01[PWM01_CLK_SRC] to select HOSC or APB0 clock.

Step 3 PWM clock divider: Set PCCR01[PWM01_CLK_DIV_M] to select different frequency
division coefficient (1/2/4/8/16/32/64/128/256).

Step 4 PWM clock bypass: Set PCGR[PWM_CLK_SRC_BYPASS_TO_PWM] to 1, output the PWM
clock after the secondary frequency division to the corresponding PWM output pin.

Step 5 PWM internal clock configuration: Set PCR[PWM_PRESCAL_K] to select any frequency
division coefficient from 1 to 256.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1648

NOTE

For the channel of complementary output and group mode, firstly, set the same clock
configurations (clock source selects APB0, clock division configures the same division factor);
secondly, open clock gating at the same time; thirdly, configure PWM parameters; finally, enable
PWM output at the same time to ensure each channel sync.

We suggest that the two channels of the same PWM pair cannot subject to two groups because of
they have the same first level clock division and gating. If must allocate based on this way, the
first level of clock division of the channel used by all groups needs to set to the same coefficient
and open gating at the same time. And the total module needs to be reset when the group mode
regroups.

8.14.4.2 Configuring PWM

Step 1 PWM mode: Set PCR[PWM_MODE] to select cycle mode or pulse mode, if pulse mode,
PCR[PWM_PUL_NUM] needs to be configured.

Step 2 PWM active level: Set PCR[PWM_ACT_STA] to select a low level or high level.

Step 3 PWM duty-cycle: Configure PPR[PWM_ENTIRE_CYCLE] and PPR[PWM_ACT_CYCLE] after
clock gating is opened.

Step 4 PWM starting/stoping phase: Configure PCNTR[PWM_COUNTER_START] after the clock
gating is enabled and before the PWM is enabled. You can verify whether the
configuration was successful by reading back PCNTR[PWM_COUNTER_STATUS].

Step 5 Enable PWM: Configure PER to select the corresponding PWM enable bit; when selecting
pulse mode, PCR[PWM_PUL_START] needs to be enabled.

8.14.4.3 Configuring Deadzone

Step 1 Set initial value: set [PDZINTV01].

Step 2 Enable Deadzone: set [PWM01_DZ_CN].

8.14.4.4 Configuring Capture Input

Step 1 Enable capture: Configure CER to enable the corresponding channel.

Step 2 Capture mode: Configure CCR[CRLF] and CCR[CFLF] to select rising edge capture or
falling edge capture, configure CCR[CAPINV] to select whether the input signal does
reverse processing.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1696

8.15 SPI

8.15.1 Overview

The Serial Peripheral Interface (SPI) is a full-duplex, synchronous, four-wire serial
communication interface between a CPU and SPI-compliant external devices. The SPI controller
contains a 64 x 8 bits receiver buffer (RXFIFO) and a 64 x 8 bits transmit buffer (TXFIFO). It can
work in master mode and slave mode.

The SPI has the following features:

 Three SPI interfaces:

- SPI0 and SPI2 in CPUX Domain

- S_SPI0 in CPUS Domain

 Multiple SPI modes:

- Master mode and slave mode for standard SPI

- Master mode for Dual-Output/Dual-Input SPI and Dual I/O SPI

- Master mode for Quad-Output/Quad-Input SPI

- Master mode for 3-wire SPI, with programmmable serial data frame length of 1 bit to 32
bits

 Maximum clock frequency: 100MHz

 TX/RX DMA slave interface

 8-bit wide and 64-entry FIFO for both transmitting and receiving data

 8-bit wide and 4-entry buffer for transmitting

 8-bit wide and 128-entry buffer for receiving data

 Supports mode0, mode1, mode2, andmode3

 Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable

NOTE

This chapter only describes SPI0, SPI2, and S_SPI0. For detailed information of SPI1 (supports
SPI mode and DBI mode), please refer to section 8.16 SPI_DBI.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1697

8.15.2 Block Diagram

The following figure shows a block diagram of the SPI.

Figure 8-63 SPI Block Diagram

SPI contains the following sub-blocks:

Table 8-40 SPI Sub-blocks

Sub-block Description

spi_rf
Responsible for implementing the internal register, interrupt, and
DMA Request.

spi_tbuf
The data length transmitted from AHB to TXFIFO is converted into 8
bits, then the data is written into the RXFIFO.

spi_rbuf
The block is used to convert the RXFIFO data into the reading data
length of AHB.

txfifo, rxfifo
The data transmitted from the SPI to the external serial device is
written into the TXFIFO; the data received from the external serial
device into SPI is pushed into the RXFIFO.

spi_cmu
Responsible for implementing SPI bus clock, chip select, internal
sample, and the generation of transfer clock.

spi_tx
Responsible for implementing SPI data transfer, the interface of the
internal TXFIFO, and status register.

spi_rx
Responsible for implementing SPI data receive, the interface of the
internal RXFIFO, and status register.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1698

8.15.3 Functional Description

8.15.3.1 External Signals

The following table describes the external signals of SPI. The MOSI and MISO are bidirectional I/O,
when SPI is as a master device, the CLK and CS are the output pin; when SPI is as a slave device,
the CLK and CS are the input pin. When using SPI, the corresponding PADs are selected as SPI
function via section 8.5 GPIO.

Table 8-41 SPI External Signals

Signal Name[Description Type
SPI0-CS[1:0] SPI0 Chip Select Signal, Low Active I/O

SPI0-CLK
SPI0 Clock Signal
Provides serial interface timing.

I/O

SPI0-MOSI SPI0 Master Data Out, Slave Data In I/O
SPI0-MISO SPI0 Master Data In, Slave Data Out I/O

SPI0-WP

SPI0 Write Protect, Low Active
Protects the memory area against all program or erase
instructions.
It also can be used for serial data input and output for SPI
Quad Input or Quad Output mode.

I/O

SPI0-HOLD

SPI0 Hold Signal
Pauses any serial communication with the device without
deselecting or resetting it.
It also can be used for serial data input and output for SPI
Quad Input or Quad Output mode.

I/O

SPI2-CS0 SPI2 Chip Select Signal, Low Active I/O

SPI2-CLK
SPI2 Clock Signal
Provides serial interface timing.

I/O

SPI2-MOSI SPI2 Master Data Out, Slave Data In I/O
SPI2-MISO SPI2 Master Data In, Slave Data Out I/O
S-SPI0-CS0 S-SPI Chip Select Signal, Low Active I/O

S-SPI0-CLK
S-SPI Clock Signal
Provides serial interface timing.

I/O

S-SPI0-MOSI S-SPI Master Data Out, Slave Data In I/O
S-SPI0-MISO S-SPI Master Data In, Slave Data Out I/O

8.15.3.2 Clock Sources

Every SPI controller gets 5 different clock sources, users can select one of them to make SPI clock
source. The following table describes the clock sources for SPI. For more details on the clock
setting, configuration, and gating information, see section 2.5 Clock Controller Unit (CCU) and
section 2.11 Power Reset Clock Management (PRCM).

file:///C:/Users/huangting/AppData/Roaming/Microsoft/Word/l

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1699

Table 8-42 SPI Clock Sources

SPI Clock Sources Description Clock Module

SPI0, SPI2

HOSC 24 MHz Crystal

CCU
PERI0_200M Peripheral Clock, default value is 200 MHz.
PERI0_300M Peripheral Clock, default value is 300 MHz.
PERI1_200M Peripheral Clock, default value is 200 MHz.
PERI1_300M Peripheral Clock, default value is 300 MHz.

S_SPI0

DCXO24M 24 MHz Crystal

PRCM

PERIPLL_DIV Peripheral Clock, default value is 200 MHz.
PERI0_300M Peripheral Clock, default value is 300 MHz.
PERI1_300M Peripheral Clock, default value is 300 MHz.

AUDIO1PLL4X
Audio system clock, the defult value is 768
MHz.

8.15.3.3 Typical Application

The following figure shows the application block diagram when the SPI master device is
connected to a slave device.

Figure 8-64 SPI Application Block Diagram

8.15.3.4 SPI Transmit Format

The SPI supports 4 different formats for data transfer. The software can select one of the four
modes in which the SPI works by setting the bit1 (Polarity) and bit0 (Phase) of SPI_TCR (Offset:
0x0008). The SPI controller master uses the SPI_SCLK signal to transfer data in and out of the
shift register. Data is clocked using any one of four programmable clock phase and polarity
combinations.

The CPOL (SPI_TCR [1]) defines the polarity of the clock signal (SPI_SCLK). The SPI_SCLK is a
high level when CPOL is ‘1’ and it is a low level when CPOL is ‘0’. The CPHA (SPI_TCR [0]) decides
whether the leading edge of SPI_SCLK is used to setup or sample data. The leading edge is used

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1700

to setup data when CPHA is ‘1’, and sample data when CPHA is ‘0’. The following table lists the
four modes.

Table 8-43 SPI Transmit Format

Mode
Polarity
(CPOL)

Phase
(CPHA)

Leading Edge Trailing Edge

Mode0 0 0 Sample on the rising edge Setup on the falling edge
Mode1 0 1 Setup on the rising edge Sample on the falling edge
Mode2 1 0 Sample on the falling edge Setup on the rising edge
Mode3 1 1 Setup on the falling edge Sample on the rising edge

The following figures describe four waveform for SPI_SCLK.

Figure 8-65 SPI Phase 0 Timing Diagram

Figure 8-66 SPI Phase 1 Timing Diagram

8.15.3.5 SPI 3-Wire Mode

The SPI 3-wire mode is only valid when the SPI controller work in master mode, and is selected
when the Work Mode Select bit (SPI_BATCR [1:0]) is equal to 0x2. And in the 3-wire mode, the

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1701

input data and the output data use the same single data line. The following figure describes the
3-wire mode.

Figure 8-67 SPI 3-Wire Mode

8.15.3.6 SPI Dual-Input/Dual-Output and Dual I/O Mode

The dual read mode (SPI x2) is selected when the DRM is set in SPI_BCC (Offset: 0x0038) [28].
Using the dual mode allows data to be transferred to or from the device at double the rate of
standard single mode, the data can be read at fast speed using two data bits (MOSI and MISO) at
a time. The following figure describes the dual-input/dual-output SPI and the dual I/O SPI.

Figure 8-68 SPI Dual-Input/Dual-Output Mode

In the dual-input/dual-output SPI mode, the command, address, and the dummy bytes output in
a unit of a single bit in serial mode through the SPI_MOSI line, only the data bytes are output
(write) and input (read) in a unit of dual bits through the SPI_MOSI and SPI_MISO.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1702

Figure 8-69 SPI Dual I/O Mode

In the dual I/O SPI mode, only the command bytes output in a unit of a single bit in serial mode
through the SPI_MOSI line. The address bytes and the dummy bytes output in a unit of dual bits
through the SPI_MOSI and SPI_MISO. And the data bytes output (write) and input (read) in a unit
of dual bits through the SPI_MOSI and SPI_MISO.

8.15.3.7 SPI Quad-Input/Quad-Output Mode

The quad read mode (SPI x4) is selected when the Quad_EN is set in SPI_BCC (Offset: 0x0038)
[29]. Using the quad mode allows data to be transferred to or from the device at 4 times the rate
of standard single mode, the data can be read at fast speed using four data bits (MOSI, MISO, IO2
(WP#) and IO3 (HOLD#)) at the same time. The following figure describes the
quad-input/quad-output SPI.

Figure 8-70 SPI Quad-Input/Quad-Output Mode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1703

In the quad-input/quad-output SPI mode, the command, address, and the dummy bytes output
in a unit of a single bit in serial mode through SPI_MOSI line. Only the data bytes output (write)
and input (read) in a unit of quad bits through the SPI_MOSI, SPI_MISO, SPI_WP#, and
SPI_HOLD#.

8.15.3.8 Transmission/Reception Bursts in Master Mode

In SPI master mode, the transmission and reception bursts (byte in unit) are configured before
the SPI transfers serial data between the processor and external device. The transmission bursts
are written in MWTC (bit [23:0]) of the SPI Master Transmit Counter Register. The transmission
bursts in single mode before automatically sending dummy bursts are written in STC (bit [23:0])
of the SPI Master Burst Control Counter Register. For dummy data, the SPI controller can
automatically send before receiving by writing DBC (bit [27:24]) in the SPI Master Burst Control
Counter Register. If users do not use the SPI controller to send dummy data automatically, then
the dummy bursts are used as the transmission counters to write together in MWTC (bit [23:0]) of
the SPI Master Transmit Counter Register. In master mode, the total burst numbers are written in
MBC (bit [23:0]) of the SPI Master Burst Counter Register. When all transmission and reception
bursts are transferred, the SPI controller will send a completed interrupt, at the same time, the
SPI controller will clear DBC, MWTC, and MBC.

8.15.3.9 SPI Sample Mode and Run Clock Configuration

The SPI controller runs at 3 kHz–100 MHz at its interface to external SPI devices. The internal SPI
clock should run at the same frequency as the outgoing clock in the master mode. The SPI clock
is selected from different clock sources, the SPI must configure different work mode. There are
three work modes: normal sample mode, delay half-cycle sample mode, delay one-cycle sample
mode. Delay half-cycle sample mode is the default mode of the SPI controller. When the SPI runs
at 40 MHz or below 40 MHz, the SPI can work at normal sample mode or delay half-cycle sample
mode. When the SPI runs over 80 MHz, setting the SDC bit in the SPI Transfer Control Register to
‘1’ makes the internal read sample point with a half-cycle delay of SPI_CLK, which is used in high
speed read operation to reduce the error caused by the time delay of SPI_CLK between master
and slave. The following tables show the different configurations of the SPI sample mode.

Table 8-44 SPI Old Sample Mode and Run Clock

SPI Sample Mode SDM(bit13) SDC(bit11) Run Clock
normal sample 1 0 <=24 MHz
delay half cycle sample 0 0 <=40 MHz
delay one cycle sample 0 1 >=80 MHz

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1704

CAUTION

The remaining spectrum is not recommended. Because when the output delay of SPI flash (refer
to the datasheet of the manufactures for the specific delay time) is the same with the half-cycle
time of SPI working clock, the variable edge of the output data for the device bumps into the
clock sampling edge of the controller, so setting 1 cycle of sampling delay would cause stability
problem.

Table 8-45 SPI New Sample Mode

SPI Sample Mode SDM (bit13) SDC (bit11) SDC1 (bit15)
normal sample 1 0 0
delay half cycle sample 0 0 0
delay one cycle sample 0 1 0
delay 1.5 cycle sample 1 1 0
delay 2 cycle sample 1 0 1
delay 2.5 cycle sample 0 0 1
delay 3 cycle sample 0 1 1

8.15.3.10 SPI Error Conditions

If any error conditions occur, the hardware will set the corresponding status bits in the SPI
Interrupt Status Register (Offset: 0x0014) and stop the transfer. For the SPI controller, the
following error scenarios can happen.

 TX_FIFO Underrun

The TX_FIFO underrun happens when the CPU/DMA reads data from TX FIFO when it is empty. In
the case, the SPI controller will end the transaction and flag the error bit along with the TF_UDF
bit in the SPI Interrupt Status Register (Offset: 0x0014). The SPI controller will generate an
interrupt if interrupts are enabled. The software has to clear the error bit and the TF_UDF bit. To
start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit
in the SPI Global Control Register (Offset: 0x0004).

 TX_FIFO Overflow

The TX_FIFO overflow happens when the CPU/DMA writes data into the TX FIFO when it is full. In
the case, the SPI controller will end the transaction and flag the error bit along with the TF_OVF
bit in the SPI Interrupt Status Register (Offset: 0x0014). The SPI controller will generate an
interrupt if interrupts are enabled. The software has to clear the error bit and the TF_OVF bit. To
start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit
in the SPI Global Control Register (Offset: 0x0004).

 RX_FIFO Underrun

The RX_FIFO underrun happens when the CPU/DMA reads data from RX FIFO when it is empty. In
the case, the SPI controller will end the transaction and flag the error bit along with the RF_UDF

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1705

bit in the SPI Interrupt Status Register (Offset: 0x0014). The SPI controller will generate an
interrupt if interrupts are enabled. The software has to clear the error bit and the RF_UDF bit. To
start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit
in the SPI Global Control Register (Offset: 0x0004).

 RX_FIFO Overflow

The RX_FIFO overflow happens when the CPU/DMA writes data into the RX FIFO when it is full. In
the case, the SPI controller will end the transaction and flag the error bit along with the RF_OVF
bit in the SPI Interrupt Status Register (Offset: 0x0014). The SPI controller will generate an
interrupt if interrupts are enabled. The software has to clear the error bit and the RF_OVF bit. To
start a new transaction, the software has to reset the FIFO by writing to the SRST (soft reset) bit
in the SPI Global Control Register (Offset: 0x0004).

8.15.4 Programming Guidelines

8.15.4.1 Writing/Reading Data Process

The SPI transfers serial data between the processor and the external device. The CPU mode and
DMA mode are the two main operational modes for SPI. For each SPI, the data is simultaneously
transmitted (shifted out serially) and received (shifted in serially). The SPI has 2 channels,
including the TX channel and RX channel. The TX channel has the path from TX FIFO to the
external device. The RX channel has the path from the external device to RX FIFO.

Write Data: The CPU or DMA must write data on the SPI_TXD (Offset: 0x0200), the data on the
register are automatically moved to TX FIFO.

Read Data: To read data from RX FIFO, the CPU or DMAmust access the SPI_RXD (Offset: 0x0300)
and the data are automatically sent to the SPI_RXD (Offset: 0x0300).

In CPU or DMA mode, the SPI sends a completed interrupt (SPI_ISR[TC]) to the processor after
each transmission is complete.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1706

CPUMode

Figure 8-71 SPI Write/Read Data in CPUMode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1707

DMAMode

Figure 8-72SPI Write/Read Data in DMAMode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1726

8.16 SPI_DBI

8.16.1 Overview

The A523 provides a 3/4 line SPI display bus interface (SPI_DBI) for video data transmission. It
supports DBI mode or SPI mode. The DBI mode is compatible with multiple video data formats at
the same time. The SPI mode is used for low-cost display schemes.

The SPI mode has the following features:

 Multiple SPI modes:

- Master mode and slave mode for standard SPI

- Master mode for Dual-Output/Dual-Input SPI and Dual I/O SPI

- Master mode for Quad-Output/Quad-Input SPI

- Master mode for 3-wire SPI, with programmable serial data frame length of 1 bit to 32
bits

 Maximum clock frequency: 100MHz

 TX/RX DMA slave interface

 8-bit wide by 64-entry FIFO for both transmitting and receiving data

 Supports mode0, mode1, mode2, andmode3

 Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are configurable

The DBI mode has the following features:

 DBI Type C 3 Line/4 Line Interface Mode

 2 Data Lane Interface Mode

 RGB111/444/565/666/888 video format

 Maximum resolution of RGB666 240 x 320@30Hz with single data lane

 Maximum resolution of RGB888 240 x 320@60Hz or 320 x 480@30Hz with dual data lane

 Tearing effect

 Software flexible control video frame rate

NOTE

This chapter only describes SPI1 (SPI mode and DBI mode). For detailed information of SPI0,
SPI2, and S_SPI0, please refer to section 8.15 SPI.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1727

8.16.2 Block Diagram

The following figure shows a block diagram of the SPI_DBI.

Figure 8-73 SPI_DBI Block Diagram

SPI_DBI contains the following sub-blocks:

Table 8-46 SPI_DBI Sub-blocks

Sub-block Description

spi_rf
Responsible for implementing the internal register, interrupt, and DMA
Request.

spi_tbuf
The data length transmitted from AHB to TXFIFO is converted into 8 bits, then
the data is written into the RXFIFO.

spi_rbuf
The block is used to convert the RXFIFO data into the reading data length of
AHB.

txfifo, rxfifo
The data transmitted from the SPI to the external serial device is written into
the TXFIFO; the data received from the external serial device into SPI is
pushed into the RXFIFO.

spi_cmu Responsible for implementing SPI bus clock, chip select, internal sample, and

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1728

Sub-block Description
the generation of transfer clock.

spi_tx
Responsible for implementing SPI data transfer, the interface of the internal
TXFIFO, and status register.

spi_rx
Responsible for implementing SPI data receive, the interface of the internal
RXFIFO, and status register.

dbi_ctrl
Responsible for implementing DBI bus clock, chip select, data command
select, RGB format reshape.

dbi_tx
Responsible for implementing DBI data transfer, the interface of the internal
TXFIFO, and status register.

dbi_rx
Responsible for implementing DBI data receive, the interface of the internal
RXFIFO, and status register.

8.16.3 Functional Description

8.16.3.1 External Signals

The following table describes the external signals of SPI_DBI. When using SPI_DBI, the
corresponding PADs are selected as SPI_DBI function via section 8.5 GPIO.

Table 8-47 GPIOmultiplexing of SPI1 and DBI

DBI SPI1
DBI-CSX SPI1-CS0
DBI-SCLK SPI1-CLK
DBI-SDO SPI1-MOSI
DBI-SDI/ DBI-TE/ DBI-DCX SPI1-MISO
DBI-DCX/DBI-WRX SPI1-HOLD
DBI-TE SPI1-WP

Table 8-48 SPI_DBI External Signals

Signal Name Description Type
SPI Mode
SPI1-CS0 SPI1 Chip Select Signal, Low Active I/O

SPI1-CLK
SPI1 Clock Signal
Provides serial interface timing.

I/O

SPI1-MOSI SPI1 Master Data Out, Slave Data In I/O
SPI1-MISO SPI1 Master Data In, Slave Data Out I/O

SPI1-WP

SPI1 Write Protect, Low Active
Protects the memory area against all program or erase
instructions.
It also can be used for serial data input and output for SPI Quad
Input or Quad Output mode.

I/O

SPI1-HOLD SPI1 Hold Signal I/O

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1729

Signal Name Description Type
Pauses any serial communication with the device without
deselecting or resetting it.
It also can be used for serial data input and output for SPI Quad
Input or Quad Output mode.

DBI Mode
DBI-CSX Chip Select Signal, Low Active I/O
DBI-SCLK Serial Clock Signal I/O
DBI-SDO Data Output Signal I/O

DBI-SDI
Data Input Signal
The data is sampled on the rising edge and the falling edge

I/O

DBI-TE
Tearing Effect Input
It is used to capture the external TE signal edge. The rising and
falling edge is configurable.

I/O

DBI-DCX
DCX pin is the select output signal of data and command.
DCX = 0: register command;
DCX = 1: data or parameter.

I/O

DBI-WRX
When DBI operates in dual data lane format, the RGB666 format
2 can use WRX to transfer data

I/O

8.16.3.2 Clock Sources

The SPI_DBI controller gets 5 different clock sources, users can select one of them to make
SPI_DBI clock source. The following table describes the clock sources for SPI_DBI. For more
details on the clock setting, configuration, and gating information, see section 2.5 Clock
Controller Unit (CCU).

Table 8-49 SPI_DBI Clock Sources

Clock Sources Description Clock Module
HOSC 24 MHz Crystal

CCU
PERI0_200M Peripheral Clock, default value is 200 MHz.
PERI0_300M Peripheral Clock, default value is 300 MHz.
PERI1_200M Peripheral Clock, default value is 200 MHz.
PERI1_300M Peripheral Clock, default value is 300 MHz.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1730

8.16.3.3 Typical Application

The following figure shows the application block diagram when the SPI master device is
connected to a slave device.

Figure 8-74 SPI Application Block Diagram

The following figure shows the application block diagram when the DBI master device is
connected to a display bus interface device.

Figure 8-75 DBI Application Block Diagram

8.16.3.4 SPI Transmission Format

The SPI supports 4 different formats for data transmission. The software can select one of the
four modes in which the SPI works by setting the bit1 (Polarity) and bit0 (Phase) of SPI_TCR. The
SPI controller master uses the SPI_SCLK signal to transfer data in and out of the shift register.
Data is clocked using any one of four programmable clock phase and polarity combinations.

The CPOL (SPI_TCR[1]) defines the polarity of the clock signal (SPI_SCLK). The SPI_SCLK is a high
level when CPOL is ‘1’ and it is a low level when CPOL is ‘0’. The CPHA (SPI_TCR[0]) decides
whether the leading edge of SPI_SCLK is used to setup or sample data. The leading edge is used
to setup data when CPHA is ‘1’, and sample data when CPHA is ‘0’. The following table lists the
four modes.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1731

Table 8-50 SPI Transmit Format

SPI Mode
Polarity
(CPOL)

Phase
(CPHA)

Leading Edge Trailing Edge

mode0 0 0 Sample on the rising edge Setup on the falling edge
mode1 0 1 Setup on the rising edge Sample on the falling edge
mode2 1 0 Sample on the falling edge Setup on the rising edge
mode3 1 1 Setup on the falling edge Sample on the rising edge

The following figures describe four waveforms for SPI_SCLK.

Figure 8-76 SPI Phase 0 Timing Diagram

Figure 8-77 SPI Phase 1 Timing Diagram

8.16.3.5 SPI Master and Slave Mode

The SPI controller can be configured to a master or slave device. The master mode is selected by
setting the MODE bit (SPI_GCR[1]); the slave mode is selected by clearing the MODE bit.

In master mode, the SPI_CLK is generated and transmitted to the external device, and the data
from the TX FIFO is transmitted on the MOSI pin, the data from the slave is received on the MISO
pin and sent to RX FIFO. The Chip Select (SPI_SS) is an active low signal, and it must be set low

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1732

before the data are transmitted or received. The SPI_SS can be selected the auto control mode
or the software manual control mode. When using auto control, the SS_OWNER (SPI_TCR[6])
must be cleared (default value is 0); when using manual control, the SS_OWNER must be set. And
the level of SPI_SS is controlled by SS_LEVEL (SPI_TCR[7]).

In slave mode, after the software selects the MODE bit (SPI_GCR [1]) to '0', it waits for master
initiate a transaction. When the master asserts SPI_SS, and SPI_CLK is transmitted to the slave,
the slave data is transmitted from TX FIFO on the MISO pin, and the data from the MOSI pin is
received in RX FIFO.

8.16.3.6 SPI 3-Wire Mode

The SPI 3-wire mode is only valid when the SPI controller work in master mode, and is selected
when the Work Mode Select bit (SPI_BATC [1:0]) is equal to 0x2. And in the 3-wire mode, the input
data and the output data use the same single data line. The following figure describes the 3-wire
mode.

Figure 8-78 SPI 3-Wire Mode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1733

8.16.3.7 SPI Dual-Input/Dual-Output and Dual I/O Mode

The dual read mode (SPI x2) is selected when the DRM is set in SPI_BCC [28]. Using the dual
mode allows data to be transferred to or from the device at double the rate of standard single
mode SPI devices, the data can be read at fast speed using two data bits (MOSI and MISO) at a
time. The following figure describes the dual-input/dual-output SPI and the dual I/O SPI

Figure 8-79 SPI Dual-Input/Dual-Output Mode

In the dual-input/dual-output SPI mode, the command, address, and the dummy bytes output in
a unit of a single bit in serial mode through the SPI_MOSI line, only the data bytes are output
(write) and input (read) in a unit of dual bits through the SPI_MOSI and SPI_MISO.

Figure 8-80 SPI Dual I/O Mode

In the dual I/O SPI mode, only the command bytes output in a unit of a single bit in serial mode
through the SPI_MOSI line. The address bytes and the dummy bytes output in a unit of dual bits
through the SPI_MOSI and SPI_MISO. And the data bytes output (write) and input (read) in a unit
of dual bits through the SPI_MOSI and SPI_MISO.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1734

8.16.3.8 SPI Quad-Input/Quad-Output Mode

The quad read mode (SPI x4) is selected when the Quad_EN is set in SPI_BCC [29]. Using the
quad mode allows data to be transferred to or from the device at 4 times the rate of standard
single mode SPI devices, the data can be read at fast speed using four data bits (MOSI, MISO, IO2
(WP#) and IO3 (HOLD#)) at the same time. The following figure describes the
quad-input/quad-output SPI.

Figure 8-81 SPI Quad-Input/Quad-Output Mode

In the quad-input/quad-output SPI mode, the command, address, and the dummy bytes output
in a unit of a single bit in serial mode through the SPI_MOSI line. Only the data bytes output
(write) and input (read) in a unit of quad bits through the SPI_MOSI, SPI_MISO, SPI_WP#, and
SPI_HOLD#.

8.16.3.9 Transmission/Reception Bursts in Master Mode

In SPI master mode, the transmission and reception bursts (byte in unit) are configured before
the SPI transfers serial data between the processor and external device. The transmission bursts
are written in MWTC (bit [23:0]) of the SPI Master Transmit Counter Register. The transmission
bursts in single mode before automatically sending dummy bursts are written in STC (bit [23:0])
of the SPI Master Burst Control Counter Register. For dummy data, the SPI controller can
automatically send before receiving by writing DBC (bit [27:24]) in the SPI Master Burst Control
Counter Register. If users do not use the SPI controller to send dummy data automatically, then
the dummy bursts are used as the transmission counters to write together in MWTC (bit [23:0]) of
the SPI Master Transmit Counter Register. In master mode, the total burst numbers are written in
MBC (bit [23:0]) of the SPI Master Burst Counter Register. When all transmission and reception
bursts are transferred, the SPI controller will send a completed interrupt, at the same time, the
SPI controller will clear DBC, MWTC, and MBC.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1735

8.16.3.10 SPI Sample Mode and Run Clock Configuration

The SPI controller runs at 3 kHz–100 MHz at its interface to external SPI devices. The internal SPI
clock should run at the same frequency as the outgoing clock in the master mode. The SPI clock
is selected from different clock sources, the SPI must configure different work mode. There are
three work modes: normal sample mode, delay half-cycle sample mode, delay one-cycle sample
mode. Delay half-cycle sample mode is the default mode of the SPI controller. When the SPI runs
at 40 MHz or below 40 MHz, the SPI can work at normal sample mode or delay half-cycle sample
mode. When the SPI runs over 80 MHz, setting the SDC bit in the SPI Transfer Control Register to
‘1’ makes the internal read sample point with a half-cycle delay of SPI_CLK, which is used in high
speed read operation to reduce the error caused by the time delay of SPI_CLK between master
and slave. The following tables show the different configurations of the SPI sample mode.

Table 8-51 SPI Old Sample Mode and Run Clock

SPI Sample Mode SDM(bit13) SDC(bit11) Run Clock
normal sample 1 0 <=24 MHz
delay half cycle sample 0 0 <=40 MHz
delay one cycle sample 0 1 >=80 MHz

CAUTION

The remaining spectrum is not recommended. Because when the output delay of SPI flash (refer
to the datasheet of the manufactures for the specific delay time) is the same with the half-cycle
time of SPI working clock, the variable edge of the output data for the device bumps into the
clock sampling edge of the controller, so setting 1 cycle of sampling delay would cause stability
problem.

Table 8-52 SPI New Sample Mode

SPI Sample Mode SDM (bit13) SDC (bit11) SDC1 (bit15)
normal sample 1 0 0
delay half cycle sample 0 0 0
delay one cycle sample 0 1 0
delay 1.5 cycle sample 1 1 0
delay 2 cycle sample 1 0 1
delay 2.5 cycle sample 0 0 1
delay 3 cycle sample 0 1 1

8.16.3.11 DBI 3-Line Interface Writing and Reading Timing

The 3-line DBI Interface I contains CSX, SDA, and SCL, where SDA shares this port for bidirectional
port data input and output.

The 3-line DBI Interface II contains CSX, SDA, SCL, and SDI; Data input and output ports are
independent of each other.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1736

Since the 3-line display bus mode has no Data/Command data line indicating whether Data or
Command is currently being transmitted, an extra bit is added to the data-stream before MSB to
indicate whether Data or Command is currently being transmitted. (0: Command, 1: Data)

The following figure shows the writing operation format of 3-line DBI Interface I and Interface II.

Figure 8-82 DBI 3-Line Display Bus Serial Interface Writing Operation Format

The 3-line DBI Interface I uses the SDA port as bidirectional data input and output port. There are
only three cases of data reading volume, 8bits/24bits/32bits, and the first data sampled is high.

The following figure shows the 8 bits reading operation format of 3-line DBI Interface I and
Interface II. After the read command is transmitted, the data is read immediately with on dummy
period.

Figure 8-83 DBI 3-Line Display Bus Serial Interface 8-bit Reading Operation Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1737

The following figure shows the 24 bits reading operation format of 3-line DBI Interface I and
Interface II. After the read command is transmitted, the data is read after waiting for the dummy
clock cycle.

Figure 8-84 DBI 3-Line Display Bus Serial Interface 24-bit Reading Operation Format

The following figure shows the 32 bits reading operation format of 3-line DBI Interface I and
Interface II. After the read command is transmitted, the data is read after waiting for the dummy
clock cycle.

Figure 8-85 DBI 3-Line Display Bus Serial Interface 32-bit Reading Operation Format

8.16.3.12 DBI 4-Line Interface Writing and Reading Timing

The 4-line DBI Interface I contains CSX, D/CX, SDA, and SCL, where SDA shares this port for
bidirectional port data input and output.

The 4-line DBI Interface II contains CSX, D/CX, SDA, SCL, and SDI; Data input and output ports are
independent of each other.

Since the 4-line display bus mode has a Data/Command data line indicating whether Data or
Command is currently being transmitted (0: Command, 1: Data). So there is no need to add an
extra bit to data-stream before MSB like the 3-line DBI.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1738

The following figure shows the writing operation format of 4-line DBI Interface I and Interface II.

Figure 8-86 DBI 4-Line Display Bus Serial Interface Writing Operation Format

The following figure shows the 8 bits reading operation format of 4-line DBI Interface I and
Interface II.

Figure 8-87 DBI 4-Line Display Bus Serial Interface 8-bit Reading Operation Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1739

The following figure shows the 24 bits reading operation format of 4-line DBI Interface I and
Interface II.

Figure 8-88 DBI 4-Line Display Bus Serial Interface 24-bit Reading Operation Format

The following figure shows the 32 bits reading operation format of 4-line DBI Interface I and
Interface II.

Figure 8-89 DBI 4-Line Display Bus Serial Interface 32-bit Reading Operation Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1740

8.16.3.13 DBI 3-Line Interface Transmit Video Format

Figure 8-90 RGB111 3-Line Interface Transmit Video Format

Figure 8-91 RGB444 3-Line Interface Transmit Video Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1741

Figure 8-92 RGB565 3-Line Interface Transmit Video Format

Figure 8-93 RGB666 3-Line Interface Transmit Video Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1742

8.16.3.14 DBI 4-Line Interface Transmit Video Format

Figure 8-94 RGB111 4-Line Interface Transmit Video Format

Figure 8-95 RGB444 4-Line Interface Transmit Video Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1743

Figure 8-96 RGB565 4-Line Interface Transmit Video Format

Figure 8-97 RGB666 4-Line Interface Transmit Video Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1744

8.16.3.15 DBI 2 Data Lane Interface Transmit Video Format

For RGB444:

Figure 8-98 RGB444 2 Data Lane Interface Transmit Video Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1745

Figure 8-99 RGB565 2 Data Lane Interface Transmit Video Format

Figure 8-100 RGB666 2 Data Lane Interface Transmit Video Format 0

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1746

Figure 8-101 RGB666 2 Data Lane Interface Transmit Video Format 1 (ilitek)

Figure 8-102 RGB666 2 Data Lane Interface Transmit Video Format 2 (New vision)

Figure 8-103 RGB888 2 Data Lane Interface Transmit Video Format

8.16.4 Programming Guidelines

8.16.4.1 Writing/Reading Data Process Using SPI Mode

The SPI transfers serial data between the processor and the external device. CPU and DMA are
the two main operational modes for SPI. For each SPI, the data is simultaneously transmitted
(shifted out serially) and received (shifted in serially). The SPI has 2 channels, including the TX

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1747

channel and RX channel. The TX channel has the path from TX FIFO to the external device. The RX
channel has the path from the external device to RX FIFO.

Write Data: CPU or DMA must write data on the SPI_TXD register, the data on the register are
automatically moved to TX FIFO.

Read Data: To read data from RX FIFO, CPU or DMA must access the register SPI_RXD and data
are automatically sent to the register SPI_RXD.

In CPU or DMA mode, the SPI sends a completed interrupt (SPI_ISR[TC]) to the processor at the
end of each transfer.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1748

CPUMode

Figure 8-104 SPI Write/Read Data in CPUMode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1749

DMAMode

Figure 8-105 SPI Write/Read Data in DMAMode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1750

8.16.4.2 Transmitting Write Command Using DBI Mode

Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

Step 2 Set the DBI EN MODE SEL (bit[30:29]) of DBI_CTL_1 (0x0104) to 0 to select the trigger
mode of DBI.

Step 3 Configure the DBI_CTL_0 (0x0100).

a) Set DBI_CTL_0[Command Type] (bit31) to 0 to configure the writing command.

b) Set DBI_CTL_0[Write Command Dummy Cycles] (bit[30:20]) to configure the
number of dummy cycles between commands.

c) Set DBI_CTL_0[Output Data Sequence] (bit19) to select the MSB or LSB.

d) Set DBI_CTL_0[Transmit Mode] (bit15) to 0 to select the command path.

e) Set DBI_CTL_0[Output Data Format] (bit[14:12]) to 0 to transmit the command.

f) Set DBI_CTL_0[DBI interface Select] (bit[10:8]) to select the DBI interface type.

g) The remaining values of the DBI_CTL_0 register remain the default value.

Step 4 Set DBI_CTL_1[DCX_DATA] (bit22) to 0 to send the command.

Step 5 DMA Path: Configure the SPI_FCR register (0x0018).

a) Set SPI_FCR[TF_DRQ_EN] (bit24) to 1 to enable TXFIFO DMA.

b) Set SPI_FCR[TX_TRIG_LEVEL] (bit[23:16]) to 255. It indicates the controller requests
data from DMA if the remaining space of TX FIFO is greater than 255.

CPU Path: Write the command to be sent to the 0x200 address.

Step 6 Set SPI_GCR[DBI_EN] (bit4) to 1 to start transmitting the command.

Step 7 Wait until the TX FIFO underrun interrupt (SPI_ISR[TF_UDF]) is 1. It indicates that the
command written to the TX FIFO is transmitted completely.

8.16.4.3 Transmitting Parameter Using DBI Mode

Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

Step 2 Set the DBI EN MODE SEL (bit[30:29]) of DBI_CTL_1 (0x0104) to 0 to select the trigger
mode of DBI.

Step 3 Configure the DBI_CTL_0 register (0x0100).

a) Set DBI_CTL_0[Command Type] (bit31) to 0 to configure the writing command.

b) Set DBI_CTL_0[Write Command Dummy Cycles] (bit[30:20]) to configure the
number of dummy cycles between commands.

c) Set DBI_CTL_0[Output Data Sequence] (bit19) to select the MSB or LSB.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1751

d) Set DBI_CTL_0[Transmit Mode] (bit15) to 0 to select the command path.

e) Set DBI_CTL_0[Output Data Format] (bit[14:12]) to 0 to transmit the command.

f) Set DBI_CTL_0[DBI interface Select] (bit[10:8]) to select the DBI interface type.

g) The remaining values of the DBI_CTL_0 register remain the default value.

Step 4 Set DBI_CTL_1[DCX_DATA] (bit22) to 1 to send the parameter.

Step 5 DMA Path: Configure the SPI_FCR register (0x0018).

a) Set SPI_FCR[TF_DRQ_EN] (bit24) to 1 to enable TXFIFO DMA.

b) Set SPI_FCR[TX_TRIG_LEVEL] (bit[23:16]) to 255. It indicates the controller requests
data from DMA if the remaining space of TX FIFO is greater than 255.

CPU Path: Write the command to be sent to the 0x200 address.

Step 6 Set SPI_GCR[DBI_EN] (bit4) to 1 to start transmitting the command.

Step 7 Wait until the TX FIFO underrun interrupt (SPI_ISR[TF_UDF]) is 1. It indicates that the
command written to the TX FIFO is transmitted completely.

8.16.4.4 Transmitting Video Using DBI Mode

Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

If the data is from the CPU path, the controller writes the command to be sent to the 0x0200
address by the AHB bus.

If the data is from the DMA path, configure DBI_CTL_1[DBI_FIFO_DRQ_EN] (bit15) to 1 and
DBI_CTL_1[TX_TRIG_LEVEL] (bit[14:8]) to 64, which indicates the controller requests data from
DMA if the remaining space of TX FIFO is greater than 64.

Software Trigger Mode

The software enables DBI_en_trigger when the edge interrupt of TE is detected.

After transmitting each frame image, the controller clears automatically the line_cnt, pixel_cnt
and stops transmitting data.

Wait for the edge interrupt of TE, the software needs to enable DBI_en_trigger, in circulation.

The operation process is as follows.

Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

Step 2 Set the DBI EN MODE SEL (bit[30:29]) of DBI_CTL_1 (0x0104) to 1 to select the software
trigger mode.

Step 3 Configure the DBI_CTL_0 register (0x0100).

a) Set DBI_CTL_0[Command Type] (bit31) to 0 to set the writing command.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1752

b) Set DBI_CTL_0[Write Command Dummy Cycles] (bit[30:20]) to configure the
number of dummy cycles between commands.

c) Set DBI_CTL_0[Output Data Sequence] (bit19) to select the MSB or LSB.

d) Set DBI_CTL_0[Transmit Mode] (bit15) to 1 to select the image path.

e) Set DBI_CTL_0[Output Data Format] (bit[14:12]) to select
RGB111//444/565/666/888.

f) Set DBI_CTL_0[DBI interface Select] (bit[10:8]) to select the DBI interface type.

g) The remaining values of the DBI_CTL_0 register remain the default value.

Step 4 Set DBI_CTL_1[DCX_DATA] (bit22) to 0 to send the image data.

Step 5 Configure DBI_Video_Size (0x110) according to the sent image size.

Step 6 Configure DBI_CTL_2 (0x0108) to set the TE-related parameter.

Step 7 Detect the TE interrupt of the DBI_INT (0x0120) register.

Step 8 Configure DBI_CTL_1[DBI_soft_trigger] to 1.

Timer Trigger Mode

The software configures timer_en to enable timer counting, and when the counter reaches the
specified value, the DBI_EN automatically can be enabled to start transmitting data.

After transmitting each frame image, the controller clears automatically the line_cnt, pixel_cnt,
and stops transmitting data.

The timer starts counting again. When the counter reaches the specified value, the controller
automatically enables DBI_EN, and in circulation until the software turns off the timer_en.

The operation process is as follows.

Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

Step 2 Set the DBI EN MODE SEL (bit30:29) of DBI_CTL_1 (0x0104) to 2 to select the timer trigger
mode.

Step 3 Configure the DBI_CTL_0 register (0x0100).

a) Set DBI_CTL_0[Command Type] (bit31) to 0 to set the writing command.

b) Set DBI_CTL_0[Write Command Dummy Cycles] (bit[30:20]) to configure the
number of dummy cycles between commands.

c) Set DBI_CTL_0[Output Data Sequence] (bit19) to select the MSB or LSB.

d) Set DBI_CTL_0[Transmit Mode] (bit15) to 1 to select the image path.

e) Set DBI_CTL_0[Output Data Format] (bit[14:12]) to select RGB111/444/565/666/888.

f) Set DBI_CTL_0[DBI interface Select] (bit[10:8]) to select the DBI interface type.

g) The remaining values of the DBI_CTL_0 register remain the default value.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1753

Step 4 Set DBI_CTL_1[DCX_DATA] (bit22) to 0 to send the image data.

Step 5 Configure DBI_Video_Size (0x110) to transmit the image size.

Step 6 Configure the related parameter of DBI_Timer (0x10C).

TE Trigger Mode

When the edge changes of the TE are detected (The rising and falling edges are optional), the
DBI_EN automatically can be enabled to start transmitting data.

After transmitting each frame image, the controller clears automatically the line_cnt, pixel_cnt,
and stops transmitting data.

When the edge changes of the TE are detected (The rising and falling edges are optional), the
DBI_EN automatically can be enabled to start transmitting data until the software shuts down
TE_EN or the screen no longer sends TE signals.

The operation process is as follows.

Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

Step 2 Set the DBI EN MODE SEL (bit30:29) of DBI_CTL_1 (0x0104) to 3 to select the TE
Configure the DBI_CTL_0 register (0x0100).

Step 3 Set DBI_CTL_0[Command Type] (bit31) to 0 to set the writing command.

a) Set DBI_CTL_0[Write Command Dummy Cycles] (bit[30:20]) to configure the
number of dummy cycles between commands.

b) Set DBI_CTL_0[Output Data Sequence] (bit19) to select the MSB or LSB.

c) Set DBI_CTL_0[Transmit Mode] (bit15) to 1 to select the image path.

d) Set DBI_CTL_0[Output Data Format] (bit[14:12]) to select RGB111/444/565/666/888.

e) Set DBI_CTL_0[DBI interface Select] (bit[10:8]) to select the DBI interface type.

f) The remaining values of the DBI_CTL_0 register remain the default value.

Step 4 Configure DBI_CTL_1[DCX_DATA] (bit22) to 0 to send the image data.

Step 5 Configure DBI_Video_Size (0x0110) to transmit the image size.

Step 6 Configure DBI_CTL_2 (0x0108) to set the TE-related parameter.

8.16.4.5 Transmitting Read Command and Read Data Using DBI Mode

Step 1 Set the SPI_DBI_MODE_SEL (bit3) of SPI_GCR (0x0004) to 1 to select DBI mode.

Step 2 Set the DBI EN MODE SEL (bit[30:29]) of DBI_CTL_1 (0x0104) to 0.

Step 3 Configure the DBI_CTL_0 register (0x0100).

a) Set DBI_CTL_0[Command Type] (bit31) to 0 to set the reading command.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1754

b) Set DBI_CTL_0[Output Data Sequence] (bit19) to select the MSB or LSB.

c) Set DBI_CTL_0[Transmit Mode] (bit15) to 0 to select the command path.

d) Set DBI_CTL_0[Output Data Format] (bit[14:12]) to 0.

e) Set DBI_CTL_0[DBI interface Select] (bit[10:8]) to select the DBI interface type.

f) The remaining values of the DBI_CTL_0 register remain the default value.

Step 4 Configure the DBI_CTL_1 register (0x0104).

a) Configure DBI_CTL_1[DCX_DATA] (bit22) to 0 to send the command.

b) Configure DBI_CTL_1[Read_MSB_First] (bit20) to select whether the first bit of the
read data is the highest or lowest bit of data.

c) Configure DBI_CTL_1[Read Data Number of Bytes] to set the byte number to be
read.

d) Configure DBI_CTL_1[Read Command Dummy Cycles] to set the dummy cycle
between the read command and the read data, when the dummy cycle is complete,
the data starts to be sampled.

Step 5 DMA Path: Configure the SPI_FCR register (0x0018).

a) Set SPI_FCR[RF_DRQ_EN] (bit8) to 1 to enable RXFIFO DMA.

b) Set SPI_FCR[RX_TRIG_LEVEL] (bit[7:0]) to 32, which indicates the controller
requests receiving data from DMA if the data of the RX FIFO is greater than 64.

CPU Path: Read data in RX FIFO from the 0x0300 address.

Step 6 Set SPI_GCR[DBI_EN] (bit4) to 1 to start transmitting command.

Step 7 Wait until DBI_INT[RD_DONE_INT] is 1. It indicates that the data is read completely.

8.16.5 Register List

Module Name Base Address
SPI1 0x0402 6000

Register Name Offset Description
SPI_GCR 0x0004 SPI Global Control Register
SPI_TCR 0x0008 SPI Transfer Control register
SPI_IER 0x0010 SPI Interrupt Control register
SPI_ISR 0x0014 SPI Interrupt Status register
SPI_FCR 0x0018 SPI FIFO Control register
SPI_FSR 0x001C SPI FIFO Status register
SPI_WCR 0x0020 SPI Wait Clock Counter register
SPI_SAMP_DL 0x0028 SPI Sample Delay Control Register
SPI_MBC 0x0030 SPI Master Burst Counter register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1782

8.17 SPI Flash controller (SPIFC)

8.17.1 Overview

The SPI Flash Controller (SPIFC) is a synchronous, serial communication interface which allows
rapid data communication with fewer software interrupts. Different from SPI, this IP is typically
designed for higher speed Flash devices and it only works at Master mode.

The SPI Flash Controller has the following features:

 Supports multiple SPI modes

- Standard SPI

- Dual-Input/Dual-Output SPI and Dual-I/O SPI

- Quad-Input/Quad-Output SPI, Quad-I/O SPI, and QPI

- Octal-Input/Octal-Output SPI, Octal-I/O SPI, and OPI

- 3-wire SPI with programmable serial data frame length of 1 bit to 32 bits

 Supports STRmode and DTR mode, and DTR mode supports DQS signal

 High Speed Clock Frequency

- 150MHz for STR Mode

- 100MHz for DTR Mode

 Software Write Protection

- Write protection for all/portion of memory via software

- Top/Bottom Block protection

 Programmable delay between transactions

 Supports Mode0, Mode1, Mode2 and Mode3

 Supports control signal configuration

- Up to four chip selects to support multiple peripherals

- Polarity and phase of the Chip Select (SPI_SS) and SPI Clock (SPI_SCLK) are
configurable

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1783

8.17.2 Block Diagram

The following figure shows a block diagram of the SPI Flash Controller.

Figure 8-106 SPI_Flash Block Diagram

SPI Flash Controller contains the following sub-blocks:

Table 8-53 SPI Flash Controller Sub-blocks

Sub-block Description

SPI_Register_File
Responsible for implementing registers configuration through AHB1
bus.

SPI_Private_DMA
Private DMA for SPI, which contains AHBmaster and supports
TXFIFO(WR_FIFO) and RXFIFO(RD_FIFO).

CMU
Responsible for generating internal clock; Implementing sckr delay,
clock sourcess selection, clock gating, and scan; supporting
synchronous release of asynchronous reset and scan.

SPI_CDC

SPI cross-clock module, in which bit width transition finishes. (TX:
32bit->8bit; RX: 8bit->32bit)
WR_BUF: Cache the write SPI data of AHB, and write them to WR_FIFO.
RD_BUF: Cache the read SPI data of RD_FIFO to AHB.
WR_FIFO: SPI write data FIFO (SRAM 32x32)
RD_FIFO: SPI read data FIFO (SRAM 32x32) in the normal mode.

SPI_Controller
SPI controlling center. It generates TX/RX controlling signal in the
course of SPI communication.

SPI_Interface
Standard SPI interface. It is responsible for receiving and transmitting
data with Devices.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1784

Sub-block Description
SPI_bit the processing module in SPI 3-wire mode.

8.17.3 Functional Description

8.17.3.1 External Signals

The following table describes the external signals of SPI Flash Controller. When using SPI Flash
Controller, the corresponding PADs are selected as SPI Flash Controller function via section 8.5
GPIO.

Table 8-54 SPI Flash Controller External Signals

Signal Name Description Type
SPIF-CS0 SPI Peripheral Chip Select Signal, Low Active O
SPIF-CLK SPI Master Mode Clock Output O
SPIF-MOSI SPI Master Data Out, Slave Data In I/O
SPIF-MISO SPI Master Data In, Slave Data Out I/O
SPIF-DQS Data Strobe Signal I
SPIF-D[7:4] SPI Master Mode Data in Octal Mode I/O
SPIF-WP SPI Write Protect, Low Active I/O
SPIF-HOLD SPI Hold Signal I/O

8.17.3.2 Clock Sources

The SPI_Flash controller gets 5 different clock sources and users can select one of them to make
SPI Flash Controller clock source. The following table describes the clock sources for SPI Flash
Controller. For more details on the clock setting, configuration, and gating information, see
section 2.5 Clock Controller Unit (CCU).

Table 8-55 SPI Flash Controller Clock Sources

Clock sources Description Clockmodule
HOSC 24 MHz Crystal

CCU
PERI0_400M Peripheral Clock, default value is 400 MHz.
PERI0_300M Peripheral Clock, default value is 300 MHz.
PERI1_400M Peripheral Clock, default value is 400 MHz.
PERI1_300M Peripheral Clock, default value is 300 MHz.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1785

8.17.3.3 Typical Application

The following figure shows the application block diagram when the SPI master device is
connected to a slave device.

Figure 8-107 Typical Application

The SPI Flash Controller is running in Master device. SPI_SCK is generated and transmitted to
external device. The data from the TX FIFO is routed to the MOSI pin. The data from slave is
received on the MISO pin and sent to RX FIFO. Chip Select(SPI_CS) signal is active in low level.
SPI_CS must be set to low before data are transmitted or received.

8.17.3.4 SPI Flash Controller feature list

Table 8-56 SPI Flash Controller Feature List

SPI mode
Feature List

STR DTR
DTR-RX-
DQS

SCK_MODE
Address
Size

Description

Bit Mode

3-wire

√ × × mode0 × /

4-wire

Standard
SPI

1-1-1-1 √ √ √
● mode 0/1/2/3

(STR)
● mode0 (DTR)

24bit/32b
it

● 1-1-1-1:
cmd-addr-mod
e-data.

● mode is
optional and
can be turned

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1786

SPI mode
Feature List

STR DTR
DTR-RX-
DQS

SCK_MODE
Address
Size

Description

off.

Dual SPI

1-1-1-2

√ √ √
1-1-2-2
1-2-2-2
2-2-2-2

Quad SPI

1-1-1-4

√ √ √
1-1-4-4
1-4-4-4
4-4-4-4

Octal SPI

1-1-1-8

√ √ √

8-wire DTR only
supports the
following:
ADDR-24+MODE
ADDR-32

1-1-8-8

1-8-8-8

8-8-8-8

8.17.3.5 SPI Flash Controller Clock

SPI includes two clock domains: ahb_clk and spi_clk:

 The functions in ahb_clk: parameter analysis (ahb_register) and DMA.

 The functions in spi_clk: cross domain clock, main control unit, the communication between
SPI-TX/RX and external devices.

The clock management unit (CMU) divides the external SPI reference clock and gets the
o_spi_clk as the internal clock. Based on the clock properties configured by the CPU, the
sckt/sckr is gotten to be used as communication clocks for the
SPI_TX_INTERFACE/SPI_RX_INTERFACE.

The clock properties include：

 SPI Clock Mode

 DQS EN

 STR or DTR

When the SPI runs at a higher clock frequency, sckr may sample the wrong data because of lane
delay. Thus, before sampling, the sckr should be processed by the receive clock latency.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1787

SPI Flash Controller Clock Mode

The SPI Flash controller supports 4 different modes for data transfer. Software can select one of
the four modes in which the SPI works by setting the bit5(SPI_CPOL) and bit4(SPI_CPHA) of SPI
Global Control Register[0x0004].

The SPI_CPOL defines the signal polarity when SPI_SCLK is in the idle state. The SPI_SCLK is high
level when POL is '1 'and it is low level when POL is '0'. The SPI_CPHA decides whether the
leading edge of SPI_SCLK is used for setup or sample data. The leading edge is used for setup
data when PHA is '1' and for sample data when PHA is '0'. The four kind of modes are listed
Table:

Table 8-57 SPIFC Modes with Clock Polarity and Phase

SPI Mode POL PHA Leading Edge Trailing Edge
0 0 0 Rising, Sample Falling, Setup
1 0 1 Rising, Setup Falling, Sample
2 1 0 Falling, Sample Rising, Setup
3 1 1 Failing, Setup Rising, Sample

During Phase 0, Polarity 0 and Phase 1, Polarity 1 operations, output data changes on the falling
edge and input data is shifted in on the rising edge.

During Phase 1, Polarity 0 and Phase 0, Polarity 1 operations, output data changes on the rising
edges and is shifted in on falling edges.

SPI Bit Mode only supports Phase 0, Polarity 0 operation; the most significant bit (MSB) of data is
transmitted first which is not configurable.

The following figure describe four waveforms for SPI_SCLK.

Figure 8-108 SPI Transfer Mode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1788

Single Transfer Rate (STR)

In mode 0 and mode 3, the input data of devices will be latched at the rising edge of SCK, and the
output data will be used at the falling edge of SCK.

Figure 8-109 SPI STR Transfer

Double Transfer Rate (DTR)

As with the STR command, the instruction bit is latched at the rising edge of the clock in the DTR
command, but the address and input data are latched at the dual edge. After the instruction bit
is latched at the falling edge of SCK, the first address bit will be latched at the next rising edge of
SCK. The first output data bit will be sent at the falling edge of the last access latency period.

As with the STR command, the SCK period is the cycle between two adjacent SCK falling edges.
In mode 0, the SCK is already at a low level when some command starts to be executed, thus the
first SCK period during the command execution indicates the cycle from the falling edge of CS#
to the first falling edge of SCK.

Figure 8-110 SPI DTR Transfer Example, 1-4-4

Figure 8-111 SPI DTR Transfer Example, 4-4-4

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1789

DQS

DQS（ DATA Strobe Signal）signal indicates input/output data valid for DTR modes and is required
to support high-speed data. When data strobe function is enabled, DQS signal is driven to ground
once CS# goes LOW till the device is driving output data, in which case DQS toggles to
synchronize data output. When data strobe function is not enabled, DQS signal will not be
driven.

Figure 8-112 SPI DTR Transfer with DQS Input Clock Signal

8.17.3.6 SPI Run Clock and Sample Mode

SCKR Delay through Digital Adjustment

To realize the SCKR delay, connect the clk_gate and clk_xor in series to control the opening time
of the EN terminal of clk_gate and the polarity of the EN terminal of clk_xor. The specific steps
are as follows:

Step 1 Enable the EN terminal delay of the first-level clk_gate module to realize a delay of 1
sclk. (the effective range is 0-3 sclk)

Step 2 Make the EN terminal of the second-level clk_xor module differ in polarity to realize a
delay of 0.5 sclk. (the effective values are 0 sclk and 0.5 sclk)

SCKR Delay through Analog Adjustment

There are delay chains in SPI, used to generate delay to make proper timing between internal SPI
clock signal and data signals. Delay chain is made up with 64 delay cells. The delay time of one
delay cell can be estimated through delay chain calibration.

Take RX delay chain as an example: the steps to calibrate delay chain are as follows:

Step 1 Configure a proper clock for the SPI Flash Controller. Calibration delay chain is based on
the clock for SPI FLASH CONTROLLER from Clock Controller Unit (CCU)

Step 2 Set proper initial delay value to (SPI Timing Configure Register, 0x000C). Write 0x60 to
this register to set initial delay value 0x20 to delay chain. Then write 0x0 to delay control
register to clear this value.

Step 3 Write 0x80 to SPI Timing Configure Register to start calibrate delay chain.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1790

Step 4 Wait until the flag (Bit7 in SPI Timing Delay State Register 0x0010) of calibration done is
set. The number of delay cells is shown at Bit5-Bit0 in SPI Timing Delay State Register.
The delay time generated by these delay cells is equal to the cycle of SPI FLASH
CONTROLLER’s clock nearly. This value is the result of calibration.

Step 5 Calculate the delay time of one delay cell according to the cycle of SPI FLASH
CONTROLLER’s clock and the result of calibration.

8.17.3.7 SPI Transfer Mode

SPI supports multiple transfer modes such as SPI Bit Mode, SPI Standard Mode, SPI Dual Mode,
SPI Quad Mode, and SPI Octal Mode. Their main differences are the number of wires. Even in the
same transfer mode, the detail modes will be derived based on the number of wires used to data
transfer. The number of data lines used by Command-Address-Data is indicated on the
subdivision pattern heading, expressed as (x-x-x). For example, Command uses one Data line,
Address and data both use two data lines, identified by (1-2-2).

SPI Bit Mode (3-Wire/4-Wire)

For some specific scenarios, some devices such as the sensor use the SPI interfaces as the
communication protocol. Generally, their data size is relatively small, and some devices support
three wires, so the bit mode is added and 3-wire mode and 4-wire mode are subdivided, which
includes SPI_CS, SPI_SCK, and 1/2 wires. The transmission length ranges from 1-32bit.

The 4-Wire Mode is selected when the Work Mode Select(bit[1:0]) is equal to 0x3 in the SPI
Bit-Aligned Transfer Configure Register. In SPI 4-Wire Mode, the input data and output data use
the independent two data line. The MISO is used for input data, and the MOSI is used for output
data.

The SPI 3-Wire Mode is only valid when the SPI controller work as Master Device, and selected
when the Work Mode Select(bit[1:0]) is equal to 0x2 in the SPI Bit-Aligned Transfer Configure
Register. and in the 3-Wire mode, the input data and the output data use the same single data
line. The following figure describe this mode.

Figure 8-113 SPI 3-Wire Mode

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1791

SPI Standard Mode (4-Wire)

Signal Wire: CS#, SCK, IO0, and IO1.

Figure 8-114 SPI CMDwith Single IO

Figure 8-115 SPI Write CMD and DATAwith One Wire

Figure 8-116 SPI Write CMD and Read DATA with OneWire (No Dummy)

Figure 8-117 SPI Write CMD and Read DATA with OneWire (with Dummy)

SPI Dual Mode

Using the dual mode allows data to be transferred to or from the device at two times the rate of
standard single mode SPI devices. Data can be read at a faster speed using two data bits (MOSI
and MISO) at a time. The following describe the Dual Input/Dual Output SPI (1-1-2), the Dual IO
SPI (1-2-2), and the (2-2-2) SPI Mode.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1792

 SPI Dual Input/dual Output Mode (1-1-2)

In the dual Input/dual Output SPI, the command, address, and the dummy bytes are output in
the unit of a single bit in serial mode through SPI_MOSI line. Only the data bytes are output
(write) and input (read) in unit of dual bits through the SPI_MOSI and SPI_MISO.

Figure 8-118 SPI Dual Input/Dual Output Mode（ 1-1-2）

 SPI Dual IO Mode (1-2-2)

In the Dual IO SPI, only the command bytes are output in the unit of a single bit in serial mode
through SPI_MOSI line. The address bytes and the dummy bytes are output in the unit of dual
bits through the SPI_MOSI and SPI_MISO. And the data bytes are output (write) and input (read)
in the unit of dual bits through the SPI_MOSI and SPI_MISO.

Figure 8-119 SPI Dual Input/Dual Output Mode (1-2-2)

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1793

SPI Quad Mode

Using the quad mode allows data to be transferred to or from the device at 4 times the rate of
standard single mode SPI devices, data can be read at fast speed using four data bits (MOSI,
MISO, IO2(WP#) and IO3(HOLD#)) at the same time. The following describe the Quad Input/Quad
Output SPI (1-1-4), 1-4-4 mode, and 4-4-4 mode.

 Quad Input/Quad Output SPI (1-1-4)

In the Quad Input/Quad Output SPI, the command, address, and the dummy bytes are output in
unit of a single bit in serial mode through SPI_MOSI line. Only the data bytes are output (write)
and input(read) in unit of quad bits through the SPI_MOSI, SPI_MISO, SPI_WP# and SPI_HOLD#.

Figure 8-120 SPI Quad Input/Dual Output Mode (1-1-4)

 1-4-4 Mode

Figure 8-121 SPI Quad Input/Dual Output Mode (1-4-4)

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1794

 4-4-4 Mode

Figure 8-122 SPI Quad Input/Dual Output Mode (4-4-4)

SPI Octal Mode

The Octal SPI Mode allow data to be transferred to or from the device at eight times the rate of
the standard SPI. When using the Octal SPI, there are 8 data wires.

 SPI Octal 1-1-8

Figure 8-123 SPI Octal Input/Dual Output Mode (1-1-8)

 SPI Octal 1-8-8

Figure 8-124 SPI Octal Input/Dual Output Mode (1-8-8)

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1795

 SPI Octal 8-8-8

Figure 8-125 SPI Octal Input/dual Output Mode (8-8-8)

8.17.3.8 SPIFC Private DMA

The private DMA adopts the chained descriptor structure. The address and size of the first
descriptor are configured by registers. After getting the first descriptor, the hardware will obtain
the data from the address recorded in the descriptors. When the current transfer finishes, the
hardware will continue to obtain descriptors based on the address of the next descriptor given
by the previous descriptor until the terminal character is found. Then, a DMA transfer ends.

Figure 8-126 Descriptor Structure Diagram

The private DMA also supports SPI parameter configuration. The SPI transfer can be configured
by the parameters of the descriptors 4-7.

Descriptor0 Definition

Bits Descriptor
31:7 Reserved

6:4

HBURST_TYPE
indicate hburst len
000: SINGLE, hburst_len = 1
011: INCR4, hburst_len = 4
101: INCR8, hburst_len = 8
111: INCR16, hburst_len = 16

3:2 /

1 DMA_DIR

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1796

Bits Descriptor
DMA Write Process or Read Process
0: Read
1:Write

0
DMA_FINISH_FLAG
DMA Finish Flag

Descriptor1 Definition

Bits Descriptor

31:24

DMA_BLK_LEN
DMA Block Len Mode
0: 8Byte
1: 16Byte
2: 32Byte
3: 64Byte
Recommended Configuration：
The data volume of DMA_BLK_LEN is greater than or equal to that of
HBURST_TYPE.

23:17 /

16:0
DMA_DATA_LEN
Indicate the data byte number of current DMA operation.

Descriptor2 Definition

Bits Descriptor

31:0

DMA_Buffer_ SADDR
The real address is as below
The word address is needed, namely, the byte address abandons the
low 2 bits.

Descriptor3 Definition

Bits Descriptor

31:0

NEXT_DESCRIPTOR_ADDR
These bits indicate the pointer to the physical memory where the next
descriptor is present, which are word (4byte) address (The lower two
bits are deleted from the byte address).

Descriptor4 Definition

Bit Description
31:30 /

29
CMD_DTR
CMD DTR Control

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1797

Bit Description
1: CMD DTR
0: CMD not DTR
CAUTION: When CMD DTR, DTR must be on and CMD2 is required.

28

COMMAND_TRANS_EN
Set to ‘1’ if command data need trans to device
SPI Controller FSM Phase Enable
1: Enable
0:Disable

27:25 /

24

ADDRESS_TRANS_EN
Set to ‘1’ if address need trans to device
SPI Controller FSM Phase Enable
1: Enable
0:Disable

23:21 /

20

MODE_BIT_TRANS_EN
Set to ‘1’ if Mode bit need trans after address
SPI Controller FSM Phase Enable
1: Enable
0:Disable

19:17 /

16

DUMMY_BIT_TRANS_EN
Dummy Bit State Enable
SPI Controller FSM Phase Enable
1: Enable
0:Disable

15:13 /

12

TX_DATA_EN
Set to ‘1’ if Data Need Trans
SPI Controller FSM Phase Enable
1: Enable
0:Disable

11:9 /

8

RX_DATA_EN
Set to ‘1’ if Data Need Receive
SPI Controller FSM Phase Enable
1: Enable
0:Disable

7:0 /

Descriptor5 Definition

Bit Description

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1798

Bit Description

31:0
ADDR_OPCODE
Address Content Trans Through SPI

Descriptor6 Definition

This register should be setup while the controller is idle.

Bit Description

31:24
CMD_OPCODE
Command Content Trans Through SPI

23:16
MODE_OPCODE
Mode Content Trans Through SPI

15:8
CMD_OPCODE2
Command2 Content Trans Through SPI

7:6

CMD_TRANS_TYPE
Command Transfer Type
00: Command can be Shifted to the device on DQ0
01: Command can be Shifted to the device on DQ0 and DQ1
10: Command can be Shifted to the device on DQ0- DQ3
11 : Command can be Shifted to the device on DQ0-DQ7

5:4

ADDR_TRANS_TYPE
Address Transfer Type
00: Address can be Shifted to the device on DQ0
01: Address can be Shifted to the device on DQ0 and DQ1
10: Address can be Shifted to the device on DQ0- DQ3
11: Address can be Shifted to the device on DQ0-DQ7

3:2

MODE_BIT_TRANS_TYPE
Mode Bit Transfer Type
00: Mode Bit can be Shifted to the device on DQ0
01: Mode Bit can be Shifted to the device on DQ0 and DQ1
10: Mode Bit can be Shifted to the device on DQ0- DQ3
11: Mode Bit can be Shifted to the device on DQ0-DQ7

1:0

DATA_TRANS_TYPE
Data Transfer Type
00: Opcode can be Shifted to the device on DQ0 only
01: Opcode can be Shifted to the device on DQ0 and DQ1 only
10: Opcode can be Shifted to the device on DQ0- DQ3
11: Opcode can be Shifted to the device on DQ0-DQ7

Descriptor7 Definition

Bit Description
31 DATA_TRANS_NUM[16]
30:29

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1799

Bit Description

28
SPI_NORMAL_EN
if dma config spi, this bit start SPI FSM.

27:25 /

24

ADDR_SIZE_MODE
Address Size Mode
0: Address Size 24bit.
1: Address Size 32bit.

23:16

DUMMY_TRANS_NUM
Number of Dummy Cycles
A value of 0 = 1 Cycle
A value of 1 = 1 Cycle
...
A value of N = N Cycle

15:0

DATA_TRANS_NUM
Num of Data Trans Through SPI(Byte)
0: Non-Write.
1: Write 1 Byte.
2: Write 2 Bytes.
3: Write 3 Bytes.
.......
65535: Write 65535 Bytes.
Note: These Bits Indicate number of data bytes in a CHIP SELECT period.
Notice the difference between DATA_TRANS_NUM here and DMA_DATA_LEN
in Descriptor1.

8.17.4 Programming Guidelines

8.17.4.1 DMA Transfer

The software operation of the SPI DMA transfer is divided into 5 steps. 5 steps are described in
detail in the following sections.

Step 1 System Setup

Step 2 SPI Initialization

Step 3 Channel Setup

Step 4 DMA Setup

Step 5 Enable SPI

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1800

Figure 8-127 SPI Programming flow

8.17.4.2 System Setup

Step 1 Configure SPI Pin

Programming the GPIO.

Step 2 Configure SPI Clock and Reset in CCU

Configure SPI ref clock, AHB Clock, De-assert SPI ref Reset, and AHB reset in Clock
Controller Unit (CCU).

Step 3 Configure SPI Internal Working Clock

a) Configure clock source (SPI_TIMING_CFG[0x000C])

 STR Mode

Write 0 to the CLK_SPI_SRC_SEL bit (bit [24]), the CLK_SCK_SRC_SEL bit (bit [25])
bit, and the CLK_SCKOUT_SRC_SEL bit (bit [26]) bit.

 DTR Mode

Write 0 to the CLK_SPI_SRC_SEL bit (bit [24]) and the CLK_SCK_SRC_SEL bit (bit
[25]) bit.

Write 1 to the CLK_SCKOUT_SRC_SEL bit (bit [26]) bit.

NOTE

When the value of the CLK_SCKOUT_SRC_SEL bit (bit [26]) bit is 1, the real output clock
frequency of SPIF-CLK signal is the SPIFC clock frequency divided by 2.

b) Generate the sckr of SPI data receiving

 Configure SCKR delay mode (SPI_TIMING_CFG[0x000C]). Refer to the section SPI
Run Clock and Sample Mode for more details.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1801

SCKR_DLY_MODE_SEL (bit [20]): Select delay mode. Writing 0 is the digital delay,
and writing 1 is the digital and analog delay.

 Configure the digital delay of SCKR

SPI_TIMING_CFG[0x000C], DIGITAL_SCKR_DELAY_CFG (bit[18:16]): digital delay
volume. (step length: 0.5 clock)

 Configure the analog delay of SCKR

SPI_TIMING_CFG[0x000C], ANALOG_SAMP_DL_SW_VALUE (bit[5:0])

c) Generate SPI output clock

 Select SPI working mode (SPI_MODE). Refer to the section SPI Flash Controller
Clock Mode for more details.

 Configure SPI_GLOBAL_CTRL[0x0004]：

SPI_CPOL (bit [5]): Clock Polarity

SPI_CPHA (bit [4]): Clock Phase

 DTR switch（ SPI_GLOBAL_CTRL[0x0004]）

DTR_EN (bit [16]): It is closed by default.

Step 4 Configure SPI Interrupt

Configure the SPI_INT_EN (0x0014[31:0]) as 0.

8.17.4.3 SPI Initialization

After the system setup, the registers of SPI can be setup. At first, the SPI needs to be initialized.

Step 1 Disable the SPI_GLOBAL_CTRL.

SPI_NMODE_EN (bit [2]): Write 0.

Step 2 Reset TX/RX FIFO (SPI_GLOBAL_CTRL_ADD[0x0008])

Reset the CDC-BUF/FIFO of TX channel: Write 1 to CDC_WF_SRST to reset the WR_BUFF
and WR_FIFO in SPI_WR_BUF_CTRL and the SWF in SPI_TX_INTERFACE.

Reset the CDC-BUF/FIFO of RX channel: Write 1 to CDC_RF_SRST.

Step 3 Water Lever

Configure the water level of FIFO.

SPI_CDC_FIFO_TRIG_LEVEL[0x004C]

8.17.4.4 Channel Setup

Select SPI Channel Parameter Resource

 SPI channel parameter resources:

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1802

- CPU is configured by AHB.

- The private DMA fetches descriptors and parses the descriptors 4-7.

 Configure SPI channel parameter sources: SPI_GLOBAL_CTRL[0x0004] and
SPI_CFG_MODE(bit[0])

- 0: Source from CPU

- 1: Source from DMA descriptor

NOTE

If the parameters source from CPU, configure in reference to all the guidelines in the section
Channel Setup. If the parameters source from DMA, configure in reference to the first two
guidelines in the section 8.17.4.4 Channel Setup.

SPI Interface Configuration—Public Configuration

Step 1 CS Delay Configuration： SPI_CS_DELAY[0x001C]

 CSDA (bit [23:16]): The intervals of two adjacent CS enable. The minimum interval is
1sclk. The actual value is CSDA+1.

 CSEOT (bit [15:8]): After the SCLK_OUT is invalid, the CS signal will be de-asserted
after CSEOT SCLK. The minimum interval is 1sclk. The actual value is CSEOT+1.

 CSSOT (bit [7:0]): After the SCLK_OUT is valid, the CS signal will be asserted after
CSSOT SCLK. The minimum interval is 1sclk. The actual value is CSSOT+1.

Step 2 Activate SPI Trans Phase (SPI_TRANS_PHA_CFG[0x0020])

In a transmission of the SPI interface, the transferring content of I/O wire is as follows.
Enable the corresponding Trans Phase based on the content to be transferred.

Figure 8-128 SPI Transfer Phase Flow Diagram

 COMMAND_TRANS_EN (bit [28]): Command (Instruct) Transfer Enable

 ADDRESS_TRANS_EN (bit [24]): Address Transfer Enable

 MODE_BIT_TRANS_EN (bit [20]): Mode Transfer Enable

 DUMMY_BIT_TRANS_EN (bit [16]): Dummy Transfer Enable

 TX_DATA_EN (bit [12]): Enable TX data transfer.

 RX_DATA_EN (bit [8]): Enable RX data transfer.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1803

NOTE

RX_DATA_EN and TX_DATA_EN cannot be activated at the same time.

Step 3 Configure the number of I/O used by TransPhase. (SPI_TRANS_CFG2[0x0028])

 CMD_TRANS_TYPE (bit [13:12])

 ADDR_TRANS_TYPE (bit [9:8])

 MODE_BIT_TRANS_TYPE (bit [5:4])

 DATA_BIT_TRANS_TYPE (bit [1:0])

Step 4 Configure the transferring number of TransPhase (SPI_TRANS_NUM[0x002C])

SPI Interface Configuration—Normal Mode

Configure the contents of all TransPhase

 ADDR: SPI_TRANS_CFG1[0x0024], ADDR_OPCODE (bit [31:0])

 CMD: SPI_TRANS_CFG2[0x0028], CMD_OPCODE (bit[31:24])

 MODE: SPI_TRANS_CFG2[0x0028], CMD_OPCODE (bit[23:16])

SPI Interface Configuration—BITMode

Refer to the functions of SPI Bit Mode (3-Wire/4-Wire).

8.17.4.5 DMA Setup

DMA Configuration Registers

Step 1 Configure the descriptor size and starting address of the first descriptor.

 SPI_DMA_CTRL[0x0040]: DMA_DESCRIPTOR_LEN（ bit[11:4]）

 SPI_DESCRIPTOR_SADDR[0x0044]

Step 2 Initiate DMA

SPI_DMA_CTRL[0x0040]， CFG_DMA_START（ bit[0]）

DMA Configuration

Step 1 In the DMA register, configure the size and the starting address of storage location for
the first descriptor.

Step 2 Configure the first DMA descriptor and store the corresponding address in the step 1.

 Descriptor0

 AHB Master Burst Configuration

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1804

HBURST_TYPE (bit [6:4]): Support SINGLE/INCR4/INCR8/INCR16 mode.

 DMA Handling Direction Configuration

DMA_DIR (bit [1]): Read by DMA, or Write by DMA.

 DMA Finish Flag

DMA_FINISH_FLAG (bit [0]): Currently the memory space allocated by the CPU
to DMA may be a part of the total data volume to be transferred. For instance,
the 256 Byte memory space is allocated to transfer 1 MB data. In this situation,
a DMA descriptor points to the allocated 256 Byte data location and the next
descriptor to fetch data. When the data of the last descriptor is fetched by DMA,
the stop bit should be pulled up to terminate a DMA handling.

 Descriptor1

 DMA_BLK_LEN ([31:16])

DMA BLK length. It indicates the size of each DMA packet, with multiples of 8
Byte aligned to achieve the optimized rate when accessing storage.

 DMA_DATA_LEN (bit [15:0])

It indicates the data volume indicated by the current descriptor of DMA

 Descriptor2

It indicates the data storage location of current descriptor.

 Descriptor3

It indicates the storage location of the next descriptor.

 Descriptor4-7

The SPI configuration parameters. When setting parameters with DMA for SPI, the
content of descriptors is configured to SPI.

8.17.4.6 Enable SPI

Normal Mode

SPI_GLOBAL_CTRL[0x0004]， SPI_NMODE_EN (bit[2])

Write 1 to the SPI_NMODE_EN, then it will be auto pulled down.

8.17.4.7 CPU Transfer

The software operation of CPU transfer is almost the same as DMA transfer. There are still two
main differences. One difference is that when CPU transfer, channel parameter cannot come
from DMA descriptors. SPI_GLOBAL_CTRL[0x0004], SPI_CFG_MODE(bit[0]) must be set 0. All
parameters should come from REGISTER FILE.

SPI_GLOBAL_CTRL[0x0004], SPI_CPU_MODE_EN(bit[20]) is used to start CPU transfer (Different
from descriptor and SPI_GLOBAL_CTRL[0x0004], SPI_NMODE_EN(bit[2])).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1805

Another difference is that when reading data from Register [0x0210], it is recommended to read
SPI_CDC_FIFO_STA[0x0050], RF_CNT([bit5-0]), especially when total read number is not integer
multiple of trigger level. When writing data to Register [0x0220], it is always ready as long as
trigger level is not reached.

NOTE

Register [0x0040] and [0x0044] are not used in CPU transfer.

8.17.4.8 Status Reading

The software operation of STATUS READING is almost the same as CPU transfer. CMD_TRANS_EN
and RX_DATA_EN must be set high because RX data path is used for status reading.
MODE_BIT_TRANS_EN and DUMMY_BIT_TRANS_EN should be set accordingly. But STATUS
OPCODE will not go through READ_FIFO and READ_BUFFER. Meanwhile, I/O Pins used should be
set accordingly. SPI_STATUS_READ[0x0068] and SPI_STATUS_READ_2[0x006C] are used for
STATUS READING. And to avoid endless reading and dead lock, CPU should tell the maximum
reading times. Then, to start STATUS READING, SPI_READ_STATUS_MODE_EN should be set. In
this mode, DATA_TRANS_NUM (002C, [15:0]) is suggested to be 1 and DTR_EN [0x0004, bit 16] is
suggested to be 0.

8.17.5 Register List

Module Name Base Address
SPIFC 0x047F 0000

Register Name Offset Description
SPI_GLOBAL_CTRL 0x0004 SPI Global Control Register
SPI_GLOBAL_CTRL_ADD 0x0008 SPI Global Control Additional Register
SPI_TIMING_CFG 0x000C SPI Timing Configure Register
SPI_TIMING_DLY_STA 0x0010 SPI Timing Delay State Register
SPI_INT_EN 0x0014 SPI Interrupt Enable Register
SPI_INT_STA 0x0018 SPI Interrupt Status Register
SPI_CS_DELAY 0x001C SPI Chipselect Delay Register
SPI_TRANS_PHA_CFG 0x0020 SPI Trans Phase Configure Register
SPI_TRANS_CFG1 0x0024 SPI Trans Configure1 Register
SPI_TRANS_CFG2 0x0028 SPI Trans Configure2 Register
SPI_TRANS_NUM 0x002C SPI Trans Number Register
SPI_DMA_CTRL 0x0040 SPI DMA Control Register
SPI_DESCRIPTOR_SADDR 0x0044 SPI DMA Descriptor Start Address Register
SPI_CDC_FIFO_TRIG_LEVEL 0x004C SPI CDC FIFO Trigger Level Register
SPI_CDC_FIFO_STA 0x0050 SPI CDC FIFO Status Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1829

8.18 UART

8.18.1 Overview

The universal asynchronous receiver transmitter (UART) provides an asynchronous serial
communication with external devices, modem (data carrier equipment, DCE). It performs
serial-to-parallel conversion on the data received from peripherals and transmits the converted
data to the internal bus. It also performs parallel-to-serial conversion on the data that is
transmitted to peripherals.

The UART has the following features:

 Up to 10 UART controllers

- 8 UART controllers in CPUX domain: UART0, UART1, UART2, UART3, UART4, UART5,
UART6, and UART7

- 2 UART controllers in CPUS domain: S_UART0 and S_UART1

 Compatible with industry-standard 16450/16550 UARTs

 Two separate FIFOs: one is RX FIFO, and the other is TX FIFO

- Each of them is 64 bytes for UART0, S_UART0, and S_UART1

- Each of them is 128 bytes for UART1, UART2, UART3, UART4, UART5, UART6, and UART7

 The working reference clock is from the APB bus clock

- Speed up to 10 Mbit/s with 160 MHz APB clock (excluding S_UART0 and S_UART1)

- Speed up to 5 Mbit/s with 80 MHz APB clock (excluding S_UART0 and S_UART1)

- Speed up to 3.75 Mbit/s with 60 MHz APB clock (excluding S_UART0 and S_UART1)

- Speed up to 1.5 Mbit/s with 24 MHz APB clock

 5 to 8 data bits for RS-232 characters, or 9 bits RS-485 format

 1, 1.5 or 2 stop bits

 Programmable parity (even, odd, or no parity)

 Supports TX/RX DMA slave controller interface

 Supports software/hardware flow control

 Supports IrDA-compatible slow infrared (SIR) format

 Supports auto-flow by using CTS & RTS (excluding UART0, S_UART0, and S_UART1)

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1830

8.18.2 Block Diagram

The following figure shows a block diagram of the UART.

Figure 8-129 UART Block Diagram

8.18.3 Functional Description

8.18.3.1 External Signals

The following table describes the external signals of UART.

Table 8-58 UART External Signals

Signal Name Description Type
UART0-TX UART0 Data Transmitter O
UART0-RX UART0 Data Receiver I
UART1-TX UART1 Data Transmitter O
UART1-RX UART1 Data Receiver I
UART1-CTS UART1 Data Clear to Send I
UART1-RTS UART1 Data Request to Send O
UART2-TX UART2 Data Transmitter O
UART2-RX UART2 Data Receiver I
UART2-CTS UART2 Data Clear to Send I
UART2-RTS UART2 Data Request to Send O
UART3-TX UART3 Data Transmitter O
UART3-RX UART3 Data Receiver I

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1831

Signal Name Description Type
UART3-CTS UART3 Data Clear to Send I
UART3-RTS UART3 Data Request to Send O
UART4-TX UART4 Data Transmitter O
UART4-RX UART4 Data Receiver I
UART4-CTS UART4 Data Clear to Send I
UART4-RTS UART4 Data Request to Send O
UART5-TX UART5 Data Transmitter O
UART5-RX UART5 Data Receiver I
UART5-CTS UART5 Data Clear to Send I
UART5-RTS UART5 Data Request to Send O
UART6-TX UART6 Data Transmitter O
UART6-RX UART6 Data Receiver I
UART6-CTS UART6 Data Clear to Send I
UART6-RTS UART6 Data Request to Send O
UART7-TX UART7 Data Transmitter O
UART7-RX UART7 Data Receiver I
UART7-CTS UART7 Data Clear to Send I
UART7-RTS UART7 Data Request to Send O
S-UART0-TX S-UART0 Data Transmitter O
S-UART0-RX S-UART0 Data Receiver I
S-UART1-TX S-UART1 Data Transmitter O
S-UART1-RX S-UART1 Data Receiver I

8.18.3.2 Clock Sources

The following table describes the clock sources of UART.

Table 8-59 UART Clock Sources

UART Interfaces Clock Source Description Clock Module

UART0 to UART7 APB1 Bus
UART clock source. Refer to CCU for
details on APB1.

CCU

S_UART0, S_UART1 APBS1 Bus
S_UART clock source. Refer to PRCM
for details on APB1.

PRCM

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1832

8.18.3.3 Typical Applications and Timing Diagram

UART Serial Data Format

The following figure shows the UART serial data format. The start bit, data bit, parity bit, and stop
bit can be configured.

Figure 8-130 UART Serial Data Format

Using UART for RTS/CTS Autoflow Control

Figure 8-131 shows the typical application diagram for RTS/CTS autoflow control. Figure 8-132
shows the data format of the RTS/CTS autoflow control.

Figure 8-131 Application Diagram for RTS/CTS Autoflow Control

Figure 8-132 RTS/CTS Autoflow Control Data Format

Using UART for Serial IrDA

Figure 8-133 shows the application diagram for the IrDA transceiver. Figure 8-134 shows the data
format of the serial IrDA.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1833

Figure 8-133 Application Diagram for IrDA Transceiver

Figure 8-134 Serial IrDA Data Format

Using UART for RS-485

Figure 8-135 shows the application diagram for the RS-485 transceiver. Figure 8-136 shows the
data format of the RS-485.

Figure 8-135 Application Diagram for RS-485 Transceiver

Figure 8-136 RS-485 Data Format

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1834

8.18.3.4 UARTOperating Mode

Data Frame Format

The UART_LCR register can set the basic parameter of a data frame: data width (5 to 8 bits), stop
bit number (1/1.5/2), parity type.

A frame transfer of the UART includes the start signal, data signal, parity bit, and stop signal. The
LSB is transmitted first.

 Start signal (start bit): It is the start flag of a data frame. According to the UART protocol, the
low level of the TXD signal indicates the start of a data frame. When the UART transmits data,
the level needs to hold high.

 Data signal (data bit): The data bit width can be configured as 5-bit, 6-bit, 7-bit, and 8-bit
through different applications. If RS-485 mode is enabled, th data bit width is 8-bit.

 Parity bit: It is a 1-bit error correction signal. Parity bit includes odd parity, even parity. The
UART can enable and disable the parity bit by setting the UART_LCR register. If RS-485 mode
is enabled, the parity bit must be keep enabled.

 Stop Signal (stop bit): It is the stop bit of a data frame. The stop bit can be set to 1-bit, 1.5-bit,
and 2-bit by the UART_LCR register. The high level of the TXD signal indicates the end of a
data frame.

Baud and Error Rates

The baud rate is calculated as follows: Baud rate = SCLK/(16 * divisor).

The SCLK is usually APB1 and can be set in section 2.5 Clock Controller Unit (CCU).

The divisor is frequency divider of UART. The frequency divider has 16-bit, the low 8-bit is in the
UART_DLL register, the high 8-bit is in the UART_DLH register.

The relationship between the different UART mode and the error rate is as follows.

Table 8-60 UARTMode Baud and Error Rates

Clock Source Divisor Baud Rate Over Sampling Error(%)
24000000 5000 300 16 0
24000000 2500 600 16 0
24000000 1250 1200 16 0
24000000 625 2400 16 0
24000000 313 4800 16 -0.16
24000000 156 9600 16 0.16
24000000 78 19200 16 0.16
24000000 39 38400 16 0.16
24000000 26 57600 16 0.16
24000000 13 115200 16 0.16
48000000 13 230400 16 0.16
60000000 1 3750000 16 0

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1835

Clock Source Divisor Baud Rate Over Sampling Error(%)
75000000 5 921600 16 1.725
48000000 3 1000000 16 0
24000000 1 1500000 16 0
48000000 1 3000000 16 0
80000000 1 5000000 16 0
160000000 1 10000000 16 0

Table 8-61 IrDA Mode Baud and Error Rates

Clock source Divisor Baud rate Encoding Error(%)
24000000 5000 300 3/16 0
24000000 2500 600 3/16 0
24000000 1250 1200 3/16 0
24000000 625 2400 3/16 0
24000000 313 4800 3/16 -0.16
24000000 156 9600 3/16 0.16
24000000 78 19200 3/16 0.16
24000000 39 38400 3/16 0.16
24000000 26 57600 3/16 0.16
24000000 13 115200 3/16 0.16

Table 8-62 RS485 Mode Baud and Error Rates

Clock source Divisor Baud rate Encoding Error(%)
24000000 5000 300 16 0
24000000 2500 600 16 0
24000000 1250 1200 16 0
24000000 625 2400 16 0
24000000 313 4800 16 -0.16
24000000 156 9600 16 0.16
24000000 78 19200 16 0.16
24000000 39 38400 16 0.16
24000000 26 57600 16 0.16
24000000 13 115200 16 0.16
48000000 13 230400 16 0.16
60000000 1 3750000 16 0
75000000 5 921600 16 1.725
48000000 3 1000000 16 0
24000000 1 1500000 16 0
48000000 1 3000000 16 0
80000000 1 5000000 16 0
160000000 1 10000000 16 0

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1836

DLAB Definition

The DLAB control bit (UART_LCR[7]) is the access control bit of the divisor Latch register.

If DLAB is 0, then the 0x00 offset address is the UART_RBR/UART_THR (RX/TX FIFO) register, and
the 0x04 offset address is the UART_IER register.

If DLAB is 1, then the 0x00 offset address is the UART_DLL register, and the 0x04 offset address is
the UART_DLH register.

When the UART initials, the divisor needs to be set. That is, writing 1 to DLAB can access the
UART_DLL and UART_DLH register, after finished the configuration, writing 0 to DLAB can access
the UART_RBR/UART_THR register.

CHCFG_AT_BUSY Definition

The function of the CHCFG_AT_BUSY (UART_HALT [1]) and CHANGE_UPDATE (UART_HALT[2])
are as follows.

CHCFG_AT_BUSY: Enable the bit, the software can also set the UART controller when UART is
busy, such as the UART_LCR, UART_DLH, UART_DLL register.

CHANGE_UPDATE: If CHCFG_AT_BUSY is enabled, and CHANGE_UPDATE is written to 1, the
configuration of the UART controller can be updated. After completed the update, the bit is
cleared to 0 automatically.

Setting divisor performs the following steps:

Write 1 to CHCFG_AT_BUSY to enable “configure at busy”.

Write 1 to DLAB (UART_LCR[7]) and set the UART_DLH and UART_DLL registers.

Write 1 to CHANGE_UPDATE to update the configuration. The bit is cleared to 0 automatically
after completing the update.

UART Busy Flag

The UART_USR [0] is a busy flag of the UART controller.

When the TX transmits data, or the RX receives data, or the TX FIFO is not empty, or the RX FIFO is
not empty, then the busy flag bit can be set to 1 by hardware, which indicates the UART
controller is busy.

8.18.4 Programming Guidelines

The following takes the UART module in the CPUX domain as an example.

8.18.4.1 Initialization

Step 1 System Initialization

 Configure APB1_CLK_REG in the CCU module to set the APB1 bus clock (The clock is
24MHz by default).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1837

 Set UART_BGR_REG[UARTx_GATING] to 1 to enable the module clock, and set
UART_BGR_REG[UARTx_RST] to 1 to de-assert the module.

Step 2 UART Controller Initialization

 IO configuration: Configure GPIO multiplex as UART function, and set UART pins to
internal pull-up mode (For detail, see the description in section 8.5 GPIO).

 Baud-rate configuration:

- Set UART baud-rate (refer to section 8.18.3.4);

- Write UART_FCR[FIFOE] to 1 to enable TX/RX FIFO;

- Write UART_HALT[HALT_TX] to 1 to disable TX transfer;

- Set UART_LCR[DLAB] to 1, remain default configuration for other bits; set 0x00
offset address to the UART_DLL register, set 0x04 offset address to the
UART_DLH register;

- Write the high 8-bit of divisor to the UART_DLH register, and write the low 8-bit
of divisor to the UART_DLL register;

- Set UART_LCR[DLAB] to 0, remain default configuration for other bits; set 0x00
offset address to the UART_RBR/UART_THR register, set 0x04 offset address to
the UART_IER register;

- Set UART_HALT[HALT_TX] to 0 to enable TX transfer.

Step 3 Controller Parameter Configuration

 Set data width, stop bits, and even/odd parity type by writing the UART_LCR
register.

 Reset, enable FIFO and set FIFO trigger condition by writing the UART_FCR register.

 Set the flow control parameter by writing the UART_MCR register.

Step 4 Interrupt Configuration

 Configure UART interrupt vector number to request UART interrupt (Refer to section
2.7 Generic Interrupt Controller (GIC) for interrupt vector number).

 In DMA mode, write UART_IER to 0 to disable interrupt; write UART_HSK[Handshake
configuration] to 0xE5 to set DMA handshake mode; write UART_FCR[DMAM] to 1 to
set DMA transmission/reception mode; set DMA parameter and request DMA
interrupt according to DMA configuration process.

 In Interrupt mode, configure UART_IER to enable the corresponding interrupt
according to requirements: such as transmit (TX) interrupt, receive (RX) interrupt,
receive line status interrupt, RS48 interrupt, etc. (Here TX/RX interrupt is usually
used).

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1838

8.18.4.2 Transferring/Receiving Data in DMAMode

Step 1 Initialize UART model. Refer to section 8.18.4.1 Initialization for initialization steps.

Step 2 Configure UART_TFL and UART_RFL to set DRQ trigger level for DMA.

Step 3 Configure UART_HALT to set PTE and DMA_PTE_RX.

Step 4 DMA data channel, including the transfer source address, the transfer destination
address, the number of data to be transferred, and the transfer type, and so on. For
details, see section 2.6 DMA Controller (DMAC).

Step 5 Enable the DMA transfer or receive function of the UART by setting the register of the
DMA module.

Step 6 Determine whether UART data is transferred or received completely based on the DMA
status. If all data is transferred or received completely, disable the DMA transfer or
receive function of the UART.

8.18.4.3 Transferring/Receiving Data in Interrupt Mode

 Data transfer

Step 1 Initialize UART model. Refer to section 8.18.4.1 for initialization steps.

Step 2 Configure UART_TFL and UART_RFL to set DRQ trigger level for DMA.

Step 3 Configure UART_HALT to set PTE and DMA_PTE_RX.

Step 4 Set UART_IER[ETBEI] to 1 to enable the UART transmission interrupt.

Step 5 Write the data to be transmitted to UART_THR.

Step 6 When the data of TX_FIFO meets trigger condition (such as FIFO/2, FIFO/4), the UART
transfer interrupt is generated.

Step 7 Check UART_USR[TFE] and determine whether TX_FIFO is empty. If UART_USR[TFE] is 1,
it indicates that the data in TX_FIFO is transmitted completely.

Step 8 Clear UART_IER[ETBEI] to 0 to disable transfer interrupt.

 Data receive

Step 1 Initialize UART model. Refer to section 8.18.4.1 for initialization steps.

Step 2 Configure UART_TFL and UART_RFL to set DRQ trigger level for DMA.

Step 3 Configure UART_HALT to set PTE and DMA_PTE_RX.

Step 4 Set UART_IER[ERBFI] to 1 to enable the UART reception interrupt.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1839

Step 5 When the received data from RX_FIFO meets trigger condition (such as FIFO/2, FIFO/4),
the UART receive interrupt is generated.

Step 6 Read data from UART_RBR.

Step 7 Check RX_FIFO status by reading UART_USR[RFNE] and determine whether to read data.
If the bit is 1, continue to read data from UART_RBR until UART_USR[RFNE] is cleared to
0, which indicates data is received completely.

8.18.4.4 Transferring/Receiving Data in RS485 Mode

Step 1 Initialize UART model. Refer to section 8.18.4.1 for initialization steps.

Step 2 Configure UART_485_CTL [1:0] to select UART RS485 receive data format.

Step 3 If AAD receive data mode is choosed, configure UART_RS485_ADDR_MATCH register to
set receive address in AAD mode.

Step 4 If DMA mode is selected, perform Step2 to Step6 in section 8.18.4.2. Otherwise, perform
Step2 to Step7 in section 8.18.4.3.

8.18.5 Register List

Module Name Base Address
UART0 0x02500000
UART1 0x02500400
UART2 0x02500800
UART3 0x02500C00
UART4 0x02501000
UART5 0x02501400
UART6 0x02501800
UART7 0x02501C00
S_UART0 0x07080000
S_UART1 0x07080400

Register Name Offset Description
UART_RBR 0x0000 UART Receive Buffer Register
UART_THR 0x0000 UART Transmit Holding Register
UART_DLL 0x0000 UART Divisor Latch Low Register
UART_DLH 0x0004 UART Divisor Latch High Register
UART_IER 0x0004 UART Interrupt Enable Register
UART_IIR 0x0008 UART Interrupt Identity Register
UART_FCR 0x0008 UART FIFO Control Register
UART_LCR 0x000C UART Line Control Register

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1864

9 Security System

9.1 Crypto Engine (CE)

9.1.1 Overview

The Crypto Engine (CE) module is one encryption/decryption algorithms accelerator. It supports
kinds of symmetric, asymmetric, HASH, and RBG algorithms. There are two software interfaces
for secure and non-secure world each. Algorithm control information is written in memory by
task descriptor, then CE automatically reads it when executing request. It supports parallel
requests from 4 channels each world and 4 different types of algorithms simultaneously. This
module also has an internal DMA controller to transfer data between CE and memory. It supports
parallel running for symmetric, HASH, asymmetric algorithms.

The CE has the following features:

 Symmetrical algorithm:

- AES symmetrical algorithm

 Key size: 28/192/256 bits

 CFBmode includes: CFB1, CFB8, CFB64, and CFB128

 CTRmode includes: CTR16, CTR32, CTR64, and CTR128

 Supports ECB, CBC, CTS, OFB, CBC-MAC, and GCMmodes

- DES symmetrical algorithm

 CTRmode, includes: CTR16, CTR32, and CTR64

 Supports ECB, CBC, and CBC-MAC mode

- Supports 3DES

- SM4 symmetrical algorithm supports ECB and CBCmode

 Hash algorithms

- Support MD5, SHA1, SHA224, SHA256, SHA384, SHA512, and SM3

- Support HMAC-SHA1, HMAC-SHA256

- Support multi-package1 mode for these ones

- Support hardware padding

 Random bit generator algorithms

- Support PRNG, 175 bits seed width, and output with multiple of 5 words

1 If not last package, input should aligned with computation block, namely 512bits or 1024bit

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1865

- Support TRNG, post-process by hardware with SHA256, output with multiple of 8 words

- Support Instantiate/Reseed/Generate/Uninstantiate 4 process

- Support prediction resistance requests

- Support 8 separate suits of Internal State

- Maxim 2^32 BYTE length of Entropy input, Nonce, Personalization, Additional input. And
length is multiple of word

 Public key algorithms

- Supports RSA public key algorithms: 512/1024/2048/3072/4096-bit width

- Supports ECC public key algorithms: 160/224/256/384/521-bit width

- Supports SM2 algorithms

 Security Strategy and System Feature

- Symmetric, asymmetric, HASH/RBG ctrl logics are separate, can handle task
simultaneously. Symmetric logic can select instantiate 2 suits at implementation time.

- Support task chain mode for each request. Task or task chain are executed at request
order.

- multi- scatter group(sg) are supported for both input and output data

- Support secure and non-secure interfaces respectively, each world issues task request
through its own interface, don’t know each other’s existence.

- Each world has 4 channels for software request, each channel has an interrupt control
and status bit, and channels are independent with each other.

- Supports byte-aligned address for all configurations

NOTE

The total length of data_length in the CBC and ECB modes of the symmetric channels needs to
be aligned according to the algotithm granularity. For example, in the AES-128 algorithm, the
total length of data_length needs to be an integer multiple of 128 bits

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1866

9.1.2 Block Diagram

The following figure shows a block diagram of CE.

Figure 9-1 CE Block Diagram

9.1.3 Functional Description

9.1.3.1 DES Algorithm

The following figure shows the DES encryption and decryption operation.

Figure 9-2 DES Encryption and Decryption

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1867

9.1.3.2 3DES Algorithm

The 3DES algorithm supports both 3-key and 2-key operations. A 2-key operation can be
regarded as a simplified 3-key operation. To be specific, key 3 is represented by key 1 in a 2-key
operation. The following figure shows the 3DES encryption and decryption operation of a 3-key
operation and a 2-key operation.

Figure 9-3 3DES Encryption and Decryption of a 3-key Operation and a 2-key Operation

9.1.3.3 ECBMode

The ECB mode is a confidentiality mode that features, for a given key, the assignment of a fixed
ciphertext block to each plaintext block, analogous to the assignment of code words in a
codebook.

In ECB mode, encryption and decryption algorithms are directly applied to the block data. The
operation of each block is independent, so the plaintext encryption and ciphertext decryption
can be performed concurrently.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1868

Figure 9-4 ECBMode Encryption and Decryption

9.1.3.4 CBC Mode

The CBC mode is a confidentiality mode whose encryption process features the combining of the
plaintext blocks with the previous ciphertext blocks. The CBC mode requires an initialization
vector (IV) to combine with the first plaintext block. The encryption process of each plaintext
block is related to the block processing result of the previous ciphertext blocks, so encryption
operations cannot be concurrently performed in CBC mode. The decryption operation is
independent of output plain text of the previous block, so decryption operations can be
performed concurrently.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1869

Figure 9-5 CBC Mode Encryption and Decryption

9.1.3.5 CTR Mode

The CTR mode is a confidentiality mode that features the application of the forward cipher to a
set of input blocks, called counters, to produce a sequence of output blocks that are
exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. All of the counters
must be distinct.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1870

Figure 9-6 CTR Mode Encryption and Decryption

9.1.3.6 CFBMode

The CFB mode is a confidentiality mode that features the feedback of successive ciphertext
segments into the input blocks of the forward cipher to generate output blocks that are
exclusive-ORed with the plaintext to produce the ciphertext, and vice versa. The CFB mode
requires an IV as the initial input block, and the forward cipher operation is applied to the IV to
produce the first output block. The first ciphertext segment is produced by exclusive-ORing the
first plaintext segment with the s most significant bits of the first output block. The value of s is 1
bit, 8 bits, 64 bits, or 128 bits.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1871

The following figure shows the s-bit CFB mode of the AES algorithms.

Figure 9-7 CFBMode Encryption and Decryption

9.1.3.7 OFBMode

The OFB mode is a confidentiality mode that features the iteration of the forward cipher on an IV
to generate a sequence of output blocks that are exclusive-ORed with the plaintext to produce
the ciphertext, and vice versa. If a same key is used, different IVs must be used to ensure
operation security.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1872

Figure 9-8 OFBMode Encryption and Decryption

9.1.3.8 CTS Mode

The CTS mode is a confidentiality mode that accepts any plaintext input whose bit length is
greater than or equal to the block size but not necessarily a multiple of the block size. Below are
the diagrams for CTS encryption and decryption.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1873

Figure 9-9 CTS Mode Encryption and Decryption

9.1.3.9 HASH Algorithm

The hash algorithms support MD5, SHA1, SHA224, SHA256, SHA384, SHA512, HMAC-SHA1, and
HMAC-SHA256. All algorithms are iterative, one-way hash functions that can process a message
to produce a condensed representation called a message digest. When a message is received,
the message digest can be used to verify whether the data has changed, that is, to verify its
integrity.

The hash algorithm of the CE supports block-aligned total length of the input data (padded by
software), that is, a multiple of 64 bytes. The message length after padding by software is used as
the configured data length for the hash algorithm.

9.1.3.10 RSA Algorithm

The RSA is a public key encryption/decryption algorithm implemented through the modular
exponentiation operation.

The ciphertext is obtained as follows: C = ME mod N. The plaintext is obtained as follows: M = CD
mod N.

M indicates the plaintext, C indicates the ciphertext, (N, E) indicates the public key, and (N, D)
indicates the private key.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1874

9.1.3.11 Storing Message

In the application, a message may not be stored contiguously in the memory, but divided into
multiple segments. Or a piece of continuously stored messages can be artificially split into
multiple pieces as needs. Then each segment corresponds to a set of the source address and
source length in the descriptor. Multiple segments correspond to groups 0-7 source
address/source length in sequence.

Each task supports up to 8 message segments, and the data volume of each message segment
supports up to 4 GWord (AES-CTS is 1 GByte). The total amount of all segments in a task (that is a
package) supports up to 4 GWord (AES-CTS is 1 GByte). If a message is divided into multiple
packages, all others are required to be whole words; when the last package of AES-CTS is less
than one word, 0 needs to be padded, and those less than one word are counted as one word.
The following figure shows the address order structure.

Figure 9-10 Word Address of Message

Byte order: low byte first, high byte last. When the data is less than one word, the low byte is
filled first. The following figure shows the byte order structure (blue means it is filled by the
message).

Figure 9-11 Byte Order

Bit order: high bit first, low bit last. When the data is less than one Byte, the high bit is filled first.
The following figure shows the bit order structure.

Figure 9-12 Bit Order

9.1.3.12 Storing Key

The length of KEY must be an integer multiple of word.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1875

9.1.3.13 Storing IV

For different algorithms, the length of IV is different. But they are integer multiples of word. To
keep the byte order of IV and HASH digest output consistent, the byte order of IV is different from
that of the message. For the multi-packet operation, the first address of the digest output result
of the previous HASH can be directly configured to the first address of the next IV, and the
software does not need to do any processing on the digest.

The following figure shows the storage method of 32-bit IV value.

Figure 9-13 The Storage Method of 32-bit IV

The following figure shows the storage method of 64-bit IV value.

Figure 9-14 The Storage Method of 64-bit IV

9.1.3.14 Task Descriptor of Hash Algorithms and RBG Algorithms

The task descriptor is data written by software to a contiguous space in memory. The data
describes the various properties of a task, such as algorithm type, mode, subcommand, key
address, data source address, the data size read from data source, abstract destination address,
the written destination data size, and the information of other tasks. First, we configure the task
descriptor by software; then we operates the registers of CE to start this task. After the task starts,
CE will read task descriptor based on the address of the task descriptor configured in register,
and perform the task one time based on the described properties.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1876

In applications, the “NEXT TASK ADDR” field can be configured as the starting address of the next
task descriptor, to concatenate multi task descriptors into a task chain. After starting the first
task, CE will perform every task in order until the “NEXT TASK ADDR” field is invalid (that is 0).

The HASH/RBG algorithms and Symmetrical/Asymmetrical algorithms use the different
descriptor structure, separately.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1877

Figure 9-15 Task Chaining of Hash Algorithms and Random Bit Generator Algorithms

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1878

The detail structures are as follows.

No. Descriptor Name Width Description

0 CTRL

CHN [1:0] Channel ID
IVE [8] IV mode enable, active high

LPKG [12]
1: Multi-SG enable. This bit needs to be
fixed as 1.

DLAV [13]

Data length valid
For last package, the bit needs be
configured. For non last package, the bit
needs not be configured.
(Please configure it as 0 in PRNG/TRNG)
1: DLA means the WORD address where
data total length (by bits) is saved.
0: DLA means the value of message total
length (by bits).

IE [16]
Interrupt enable for current task, active
high

1 CMD

HASH SEL [3:0]

Hash algorithms select
0: MD5
1: SHA1
2: SHA224
3: SHA256
4: SHA384
5: SHA512
6: SM3
Other: Reserved

HME [4] HMACmode enable, active high

RGB SEL [11:8]

RGB algorithms select
0: No RGB use
1: PRNG
2: TRNG
Other: Reserved

SUB CMD [31:16]

Sub-command in a specific algorithms
When using PRNG, sub_cmd[15] means
PRNG seed reload； sub_cmd[14:0] means
PRNG linearly shifted seed

2 DLA DLA [31:0]

Data length OR its address.
For last package, the field needs be
configured. For non last package, the field
needs not be configured.
(Not used in PRNG/TRNG)
When DLAV=1, here is the WORD address
where data total length (by bits) is saved.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1879

No. Descriptor Name Width Description
When DLAV=0, here is the value of
message total length (by bits)

3

DLA DLA [7:0]
When DLAV=1, here is the byte address
bit[39:32] where data total length (by bits)
is saved.

KA KA [31:8]
KEY Address:
The byte address bit[23:0].where HMAC
KEY or PRNG KEY is saved.

4

KA KA [15:0]
KEY Address:
The byte address bit[39:24].where HMAC
KEY or PRNG KEY is saved.

IVA IVA [31:16]
IV Address:
The byte address bit[15:0] where IV is
saved.

5
IVA IVA [23:0]

IV Address:
The byte address bit[39:16] where IV is
saved.

Reversed Reversed [31:24] /

6+5*x SGx_W0 SGx_WORD0 [31:0]
Source Data Address x:
The byte address bit[31:0] where Source
Datax is saved.

7+5*x SGx_W1 SGx_WORD1

[7:0]
Source Data Address x:
The byte address bit[39:32] where Source
Datax is saved.

[31:8]
Output Data Address x:
The byte address bit[23:0]where Output
Datax to be saved.

8+5*x
SGx_W2 SGx_WORD2 [15:0]

Output Data Address x:
The byte address bit[39:24]where Output
Datax to be saved.

Reversed Reversed [31:16] /

9+5*x SGx_W3 SGx_WORD3 [31:0]
Source Data length x:
The Length (by bytes) of Source Datax.

10+5*x SGx_W4 SGx_WORD4 [31:0]
Output Data length x:
The Length (by bytes) of output Datax.

46 NSA NSA [31:0]

Next SG Address:
The byte address bit[31:0].where the
descriptor of the next 8 sg in a task is
saved. If this is the only one group sg or
the last group of a task, NSAmust be
32’h0.

47 NSA NSA [7:0] Next SG Address:

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1880

No. Descriptor Name Width Description
The byte address bit[39:32].where the
descriptor of the next 8 sg in a task is
saved. If this is the only one group sg or
the last group of a task, NSAmust be 8’h0.
The [38] indicate whether the next set of
source sg exists.[39] bit indicate whether
the next set of output（ dst） sg exists.

NTA NTA [31:8]

Next task Address:
The byte address bit[23:0] where the
descriptor of the next task in a task-chain
is saved. If this is the only task or the last
task of a task-chain, NTA must be 24’h0.

48
NTA NTA [7:0]

Next task Address:
The byte address bit[39:24] where the
descriptor of the next task in a task-chain
is saved. If this is the only task or the last
task of a task-chain, NTA must be 16’h0.

Reversed Reversed [31:8] /
49 Reversed Reversed / /
50 Reversed Reversed / /
51 Reversed Reversed / /

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1881

9.1.3.15 Other Algorithms Task Descriptor

Software make request through task descriptor, providing algorithm type, mode, key address,
source/destination sg address and size, etc. The task descriptor is as follows.

Figure 9-16 Task Chaining of Other Algorithms

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1882

Channel id supports 0-3 for each world.

 Common ctrl

Bit Read/Write Default Description

31 R/W 0
interrupt enable for current task
0: disable interrupt
1: enable interrupt

30:25 / / /

24:17 R/W 0

cbc_mac_len
the outcome bit length of CBC-MAC when in CBC-MAC
mode.
The part also be used as gcm/ocb mode tag_len.

16:9 / / /

8 R/W 0

OP DIR
Algorithm Operation Direction
0: Encryption
1: Decryption

7 / / /

6:0 R/W 0

Algorithm type
0x0: AES
0x1: DES
0x2: Triple DES (3DES)
0x3： SM4
others: reserved

0x20: RSA
0x21: ECC
0x22: SM2
others: reserved

0x30: RAES
Others: reserved

 Symmetric ctrl

Bit Read/Write Default Description
31:30 / / /

29:28 R/W 0

SCK_SEL
0: use sck0/maskkey0
1: use sck1/maskkey1
2: use sck2/maskkey2
3: reserved

27:24 / / /

23:20 R/W 0
KEY Select
key select for AES/SM4/TDES（ TDES only configured as

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1883

Bit Read/Write Default Description
0/8-15）
0: Select input CE_KEYx (Normal Mode)
1: Select {SSK}
2: Select {HUK}
3: Select {RSSK}, used for decrypt EK, BSSK
4-7: Reserved
8-15: Select internal Key n (n from 0 to 7)

19:18 R/W 0

cfb_width
For AES-CFB width
0: CFB1
1: CFB8
2: CFB64
3: CFB128

17 / / /

16 R/W 0

AES CTS last package flag
When set to ‘ 1’ , it means this is the last package for
AES-CTS mode(the size of the last package >128bit).
The part also be used as gcm/ocb mode
gcm_last/ocb_last .

15:12 / / /

11:8 R/W 0

AES/DES/3DES/RAESmodes. DES/3DES only supports
ECB/CBC/CTR. RAES only supports ECB/CBC
operation mode for symmetric
0: Electronic Code Book (ECB) mode
1: Cipher Block Chaining (CBC) mode
2: Counter (CTR) mode
3: CipherText Stealing (CTS) mode
4: Output feedback (OFB)mode
5: Cipher feedback (CFB)mode
6: CBC-MAC mode
7: OCBmode
8: GCMmode
9: Reserved
Other: reserved

7:6 / / /

5:4 R/W 0

gcm_iv_mode[1:0]
gcm_iv_mode[0]:value 1 show the last req for iv calculate
gcm_iv_mode[1]:
0 :no GHASH calculate mode
1: GHASH calculate mode

gcm_iv_mode[1:0]:
00: IDLE state ,this calculate do not have the process from iv
to J0.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1884

Bit Read/Write Default Description
01: by iv padding generating J0. On the mode ,iv padding is
96 bits, so iv_length will be 96bits.
10: by GHASH calculate for iv generating J0, and this is not
the last req for iv calculate.
11: by GHASH calculate for iv generating J0, and this is the
last req for iv calculate

3:2 R/W 0

CTR Width
Counter Width for CTR Mode
0: 16-bits Counter
1: 32-bits Counter, gcmmode always use this setting
without software
2: 64-bits Counter
3: 128-bits Counter

1:0 R/W 0

AES Key Size
0: 128-bits
1: 192-bits
2: 256-bits
3: Reserved

 Asymmetric ctrl

Bit Read/Write Default Description
31:21 / / /

20:16 R/W 0

PKC algorithm mode.
For modular computation:
00000: modular exponent(RSA)
00001: modular add
00010: modular minus
00011: modular multiplication
others: reserved

For ECC:
00000: point add
00001: point double
00010: point multiplication
00011: point verification
00100: encryption
00101: decryption
00110: sign
00111: sign verify
others: reserved

For SM2：
00000: encryption

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1885

Bit Read/Write Default Description
00001: decryption
00010: sign
00011: sign verify
00100: key exchange

15:8 / / /

7:0 R/W 0
Asymmetric algorithms operation width field. It indicates
howmuch width this request apply, as words.

key addr field is address for each algorithm’s key, also for extension feature micro codes address.
(By byte)

ctr addr is address for next block’s IV. (By byte)

src/dst sgX addr field indicate 40bits address for source and destination data. (By byte)

src/dst sgX size field indicates size for each sg respectively(by byte)

For SG, the detail as flow:

1 group SG has 8 sg, each sg has 5 words, the ADDR is 40 bits and byte-addr; the SIZE is 32bits

nad byte-unit. We will support unlimited SG number,but the 1860 just use for test. This can has

many group SG in a task, using the next_sg_addr to create the new SG information in the task.

Next sg field should be set to 0 when no next group sg, else set to next sg’s descriptor.

next task field should be set to 0 when no next task, else set to next task’s descriptor.

9.1.3.16 PKC Microcode

PKC module supports RSA, ECC, SM2 algorithms in the form of microcode. It implements basic
modular add, minus, multiplication, point add, point double, and logic computing, etc.
Complete RSA/ECC/SM2 encryption, decryption, sign, verify are implemented with these
microcode.

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1886

Asymmetric algorithms RSA/ECC/SM2 are implemented as microcode in PKC module. The
encryption, decryption, sign, verify operations of asymmetric algorithms are composed with
certain fixed microcode with hardware.

9.1.3.17 PKC Configuration

Before starting PKC, task description must be configured. Parameters to PKC are assigned to
source sg, outcome is put to destination sg.

For RSA, parameters should be at the order of key, modulus, plaintext.

For ECC point add P2 = P0 + P1, parameters should be at the order of p, P0x, P0y, P1x, P1y.
Output is at the order of P2x, P2y.

For ECC point double P2 = 2*P0, parameters should be at the order of p, a, P0x, P0y. Output is at
the order of P2x, P2y.

For ECC point multiplication P2 = k*P0, parameters should be at the order of p, k, a, P0x, P0y.
Output is at the order of P2x, P2y.

For ECC point verification, parameters should be at the order of p, a, P0x, P0y, b. Output is 1 or 0.

For ECC encryption, parameters should be at the order of random k, p, a, Gx, Gy, Qx, Qy, m.
Output is at the order of Rx, Ry, c.

For ECC decryption, parameters should be at the order of random k, p, a, Rx, Ry, c. Output is m.

For ECC signature, parameters should be at the order of random k, p, a, Gx, Gy, n, d, e. Output is
at the order of r, s.

For ECC signature verification, parameters should be at the order of n, s, e, r, p, a, Gx, Gy, Qx, Qy,
n, r. Output is 1 or 0.

9.1.3.18 Error Check

After CE reads the task descriptor, CE can monitor error during algorithm operation. When the
error is monitored, CE will do the following operations:

The task will pause immediately

Generates interrupt

The corresponding channel of the task status register is Fail

The corresponding channel bit of error status register can be read error number

The error number has the following types.

Code Name Description Algorithms Type

0x01
algorithm not
support

The algorithm type is not supported. All

0x11
KEYSRAM access
error

In AES decryption task, RSSK is used as
plaintext, the DST address is not in

AES decryption

Confidential

Copyright©2023 Allwinner Technology Co.,Ltd. All Rights Reserved. 1887

Code Name Description Algorithms Type
KEYSRAM space.

0x21
key ladder
configuration error

/ KL

0x31 data length error
Input size or output size configuration size
error.

All

9.1.4 Programming Guidelines

9.1.4.1 Processing Secure Debug

The following figure shows the secure debug process.

Figure 9-17 Secure Debug Process

In secure debug process, CE mainly performs the following operatioins:

 Signature authentication

 Comparision of hash values of public key and chip_id

 Transmission of debug mode and transmission of authentification result

9.1.5 Register List

There are tree groups of registers in

Module Name Base Address Comments
CE_NS 0x03040000 Non-Security CE
CE_S 0x03040800 Security CE
SECURE_DEBUG_CFG 0x03042000 Secure Debug Configuration

