Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   catanh    ( 3 )

комплексные арктангенсы гиперболические (complex arc tangents hyperbolic)

Имя (Name)

catanh, catanhf, catanhl - complex arc tangents hyperbolic


Синопсис (Synopsis)

#include <complex.h>

double complex catanh(double complex z); float complex catanhf(float complex z); long double complex catanhl(long double complex z);

Link with -lm.


Описание (Description)

These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z), then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))


Версии (Versions)

These functions first appeared in glibc in version 2.1.


Атрибуты (Attributes)

For an explanation of the terms used in this section, see attributes(7).

┌──────────────────────────────────────┬───────────────┬─────────┐ │Interface Attribute Value │ ├──────────────────────────────────────┼───────────────┼─────────┤ │catanh(), catanhf(), catanhl() │ Thread safety │ MT-Safe │ └──────────────────────────────────────┴───────────────┴─────────┘


Стандарты (Conforming to)

C99, POSIX.1-2001, POSIX.1-2008.


Примеры (Examples)

/* Link with "-lm" */

#include <complex.h> #include <stdlib.h> #include <unistd.h> #include <stdio.h>

int main(int argc, char *argv[]) { double complex z, c, f;

if (argc != 3) { fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]); exit(EXIT_FAILURE); }

z = atof(argv[1]) + atof(argv[2]) * I;

c = catanh(z); printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = 0.5 * (clog(1 + z) - clog(1 - z)); printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));

exit(EXIT_SUCCESS); }


Смотри также (See also)

atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)