Путеводитель по Руководству Linux

  User  |  Syst  |  Libr  |  Device  |  Files  |  Other  |  Admin  |  Head  |



   lex.1p    ( 1 )

генерировать программы для лексических задач (РАЗРАБОТКА) (generate programs for lexical tasks (DEVELOPMENT))

Расширенное описание (Extended description)

Each input file shall contain lex source code, which is a table of regular expressions with corresponding actions in the form of C program fragments.

When lex.yy.c is compiled and linked with the lex library (using the -l l operand with c99), the resulting program shall read character input from the standard input and shall partition it into strings that match the given expressions.

When an expression is matched, these actions shall occur:

* The input string that was matched shall be left in yytext as a null-terminated string; yytext shall either be an external character array or a pointer to a character string. As explained in Definitions in lex, the type can be explicitly selected using the %array or %pointer declarations, but the default is implementation-defined.

* The external int yyleng shall be set to the length of the matching string.

* The expression's corresponding program fragment, or action, shall be executed.

During pattern matching, lex shall search the set of patterns for the single longest possible match. Among rules that match the same number of characters, the rule given first shall be chosen.

The general format of lex source shall be:

Definitions %% Rules %% UserSubroutines

The first "%%" is required to mark the beginning of the rules (regular expressions and actions); the second "%%" is required only if user subroutines follow.

Any line in the Definitions section beginning with a <blank> shall be assumed to be a C program fragment and shall be copied to the external definition area of the lex.yy.c file. Similarly, anything in the Definitions section included between delimiter lines containing only "%{" and "%}" shall also be copied unchanged to the external definition area of the lex.yy.c file.

Any such input (beginning with a <blank> or within "%{" and "%}" delimiter lines) appearing at the beginning of the Rules section before any rules are specified shall be written to lex.yy.c after the declarations of variables for the yylex() function and before the first line of code in yylex(). Thus, user variables local to yylex() can be declared here, as well as application code to execute upon entry to yylex().

The action taken by lex when encountering any input beginning with a <blank> or within "%{" and "%}" delimiter lines appearing in the Rules section but coming after one or more rules is undefined. The presence of such input may result in an erroneous definition of the yylex() function.

C-language code in the input shall not contain C-language trigraphs. The C-language code within "%{" and "%}" delimiter lines shall not contain any lines consisting only of "%}", or only of "%%".

Definitions in lex Definitions appear before the first "%%" delimiter. Any line in this section not contained between "%{" and "%}" lines and not beginning with a <blank> shall be assumed to define a lex substitution string. The format of these lines shall be:

name substitute

If a name does not meet the requirements for identifiers in the ISO C standard, the result is undefined. The string substitute shall replace the string {name} when it is used in a rule. The name string shall be recognized in this context only when the braces are provided and when it does not appear within a bracket expression or within double-quotes.

In the Definitions section, any line beginning with a <percent- sign> ('%') character and followed by an alphanumeric word beginning with either 's' or 'S' shall define a set of start conditions. Any line beginning with a '%' followed by a word beginning with either 'x' or 'X' shall define a set of exclusive start conditions. When the generated scanner is in a %s state, patterns with no state specified shall be also active; in a %x state, such patterns shall not be active. The rest of the line, after the first word, shall be considered to be one or more <blank>-separated names of start conditions. Start condition names shall be constructed in the same way as definition names. Start conditions can be used to restrict the matching of regular expressions to one or more states as described in Regular Expressions in lex.

Implementations shall accept either of the following two mutually-exclusive declarations in the Definitions section:

%array Declare the type of yytext to be a null-terminated character array.

%pointer Declare the type of yytext to be a pointer to a null- terminated character string.

The default type of yytext is implementation-defined. If an application refers to yytext outside of the scanner source file (that is, via an extern), the application shall include the appropriate %array or %pointer declaration in the scanner source file.

Implementations shall accept declarations in the Definitions section for setting certain internal table sizes. The declarations are shown in the following table.

Table: Table Size Declarations in lex

┌────────────┬────────────────────────────────────┬───────────────┐ │Declaration Description Minimum Value │ ├────────────┼────────────────────────────────────┼───────────────┤ │%p n │ Number of positions │ 2500 │ │%n n │ Number of states │ 500 │ │%a n │ Number of transitions │ 2000 │ │%e n │ Number of parse tree nodes │ 1000 │ │%k n │ Number of packed character classes │ 1000 │ │%o n │ Size of the output array │ 3000 │ └────────────┴────────────────────────────────────┴───────────────┘ In the table, n represents a positive decimal integer, preceded by one or more <blank> characters. The exact meaning of these table size numbers is implementation-defined. The implementation shall document how these numbers affect the lex utility and how they are related to any output that may be generated by the implementation should limitations be encountered during the execution of lex. It shall be possible to determine from this output which of the table size values needs to be modified to permit lex to successfully generate tables for the input language. The values in the column Minimum Value represent the lowest values conforming implementations shall provide.

Rules in lex The rules in lex source files are a table in which the left column contains regular expressions and the right column contains actions (C program fragments) to be executed when the expressions are recognized.

ERE action ERE action ...

The extended regular expression (ERE) portion of a row shall be separated from action by one or more <blank> characters. A regular expression containing <blank> characters shall be recognized under one of the following conditions:

* The entire expression appears within double-quotes.

* The <blank> characters appear within double-quotes or square brackets.

* Each <blank> is preceded by a <backslash> character.

User Subroutines in lex Anything in the user subroutines section shall be copied to lex.yy.c following yylex().

Regular Expressions in lex The lex utility shall support the set of extended regular expressions (see the Base Definitions volume of POSIX.1‐2017, Section 9.4, Extended Regular Expressions), with the following additions and exceptions to the syntax:

"..." Any string enclosed in double-quotes shall represent the characters within the double-quotes as themselves, except that <backslash>-escapes (which appear in the following table) shall be recognized. Any <backslash>-escape sequence shall be terminated by the closing quote. For example, "\01""1" represents a single string: the octal value 1 followed by the character '1'.

<state>r, <state1,state2,...>r The regular expression r shall be matched only when the program is in one of the start conditions indicated by state, state1, and so on; see Actions in lex. (As an exception to the typographical conventions of the rest of this volume of POSIX.1‐2017, in this case <state> does not represent a metavariable, but the literal angle-bracket characters surrounding a symbol.) The start condition shall be recognized as such only at the beginning of a regular expression.

r/x The regular expression r shall be matched only if it is followed by an occurrence of regular expression x (x is the instance of trailing context, further defined below). The token returned in yytext shall only match r. If the trailing portion of r matches the beginning of x, the result is unspecified. The r expression cannot include further trailing context or the '$' (match-end-of-line) operator; x cannot include the '^' (match-beginning-of-line) operator, nor trailing context, nor the '$' operator. That is, only one occurrence of trailing context is allowed in a lex regular expression, and the '^' operator only can be used at the beginning of such an expression.

{name} When name is one of the substitution symbols from the Definitions section, the string, including the enclosing braces, shall be replaced by the substitute value. The substitute value shall be treated in the extended regular expression as if it were enclosed in parentheses. No substitution shall occur if {name} occurs within a bracket expression or within double- quotes.

Within an ERE, a <backslash> character shall be considered to begin an escape sequence as specified in the table in the Base Definitions volume of POSIX.1‐2017, Chapter 5, File Format Notation ('\\', '\a', '\b', '\f', '\n', '\r', '\t', '\v'). In addition, the escape sequences in the following table shall be recognized.

A literal <newline> cannot occur within an ERE; the escape sequence '\n' can be used to represent a <newline>. A <newline> shall not be matched by a period operator.

Table: Escape Sequences in lex

┌─────────┬──────────────────────────┬──────────────────────────┐ │ Escape │ │ │ │Sequence Description Meaning │ ├─────────┼──────────────────────────┼──────────────────────────┤ │\digits │ A <backslash> character │ The character whose │ │ │ followed by the longest │ encoding is represented │ │ │ sequence of one, two, or │ by the one, two, or │ │ │ three octal-digit │ three-digit octal │ │ │ characters (01234567). │ integer. Multi-byte │ │ │ If all of the digits are │ characters require │ │ │ 0 (that is, │ multiple, concatenated │ │ │ representation of the │ escape sequences of this │ │ │ NUL character), the │ type, including the │ │ │ behavior is undefined. │ leading <backslash> for │ │ │ │ each byte. │ ├─────────┼──────────────────────────┼──────────────────────────┤ │\xdigits │ A <backslash> character │ The character whose │ │ │ followed by the longest │ encoding is represented │ │ │ sequence of hexadecimal- │ by the hexadecimal │ │ │ digit characters │ integer. │ │ │ (01234567abcdefABCDEF). │ │ │ │ If all of the digits are │ │ │ │ 0 (that is, │ │ │ │ representation of the │ │ │ │ NUL character), the │ │ │ │ behavior is undefined. │ │ ├─────────┼──────────────────────────┼──────────────────────────┤ │\c │ A <backslash> character │ The character 'c', │ │ │ followed by any │ unchanged. │ │ │ character not described │ │ │ │ in this table or in the │ │ │ │ table in the Base │ │ │ │ Definitions volume of │ │ │ │ POSIX.1‐2017, Chapter 5, │ │ │ │ File Format Notation │ │ │ │ ('\\', '\a', '\b', '\f', │ │ │ │ '\n', '\r', '\t', '\v'). │ │ └─────────┴──────────────────────────┴──────────────────────────┘ Note: If a '\x' sequence needs to be immediately followed by a hexadecimal digit character, a sequence such as "\x1""1" can be used, which represents a character containing the value 1, followed by the character '1'.

The order of precedence given to extended regular expressions for lex differs from that specified in the Base Definitions volume of POSIX.1‐2017, Section 9.4, Extended Regular Expressions. The order of precedence for lex shall be as shown in the following table, from high to low.

Note: The escaped characters entry is not meant to imply that these are operators, but they are included in the table to show their relationships to the true operators. The start condition, trailing context, and anchoring notations have been omitted from the table because of the placement restrictions described in this section; they can only appear at the beginning or ending of an ERE.

Table: ERE Precedence in lex

┌──────────────────────────────────┬──────────────────────┐ │ Extended Regular Expression Precedence │ ├──────────────────────────────────┼──────────────────────┤ │collation-related bracket symbols │ [= =] [: :] [. .] │ │escaped characters │ \<special character> │ │bracket expression │ [ ] │ │quoting │ "..." │ │grouping │ ( ) │ │definition │ {name} │ │single-character RE duplication │ * + ? │ │concatenation │ │ │interval expression │ {m,n} │ │alternation │ | │ └──────────────────────────────────┴──────────────────────┘ The ERE anchoring operators '^' and '$' do not appear in the table. With lex regular expressions, these operators are restricted in their use: the '^' operator can only be used at the beginning of an entire regular expression, and the '$' operator only at the end. The operators apply to the entire regular expression. Thus, for example, the pattern "(^abc)|(def$)" is undefined; it can instead be written as two separate rules, one with the regular expression "^abc" and one with "def$", which share a common action via the special '|' action (see below). If the pattern were written "^abc|def$", it would match either "abc" or "def" on a line by itself.

Unlike the general ERE rules, embedded anchoring is not allowed by most historical lex implementations. An example of embedded anchoring would be for patterns such as "(^| )foo( |$)" to match "foo" when it exists as a complete word. This functionality can be obtained using existing lex features:

^foo/[ \n] | " foo"/[ \n] /* Found foo as a separate word. */

Note also that '$' is a form of trailing context (it is equivalent to "/\n") and as such cannot be used with regular expressions containing another instance of the operator (see the preceding discussion of trailing context).

The additional regular expressions trailing-context operator '/' can be used as an ordinary character if presented within double- quotes, "/"; preceded by a <backslash>, "\/"; or within a bracket expression, "[/]". The start-condition '<' and '>' operators shall be special only in a start condition at the beginning of a regular expression; elsewhere in the regular expression they shall be treated as ordinary characters.

Actions in lex The action to be taken when an ERE is matched can be a C program fragment or the special actions described below; the program fragment can contain one or more C statements, and can also include special actions. The empty C statement ';' shall be a valid action; any string in the lex.yy.c input that matches the pattern portion of such a rule is effectively ignored or skipped. However, the absence of an action shall not be valid, and the action lex takes in such a condition is undefined.

The specification for an action, including C statements and special actions, can extend across several lines if enclosed in braces:

ERE <one or more blanks> { program statement program statement }

The program statements shall not contain unbalanced curly brace preprocessing tokens.

The default action when a string in the input to a lex.yy.c program is not matched by any expression shall be to copy the string to the output. Because the default behavior of a program generated by lex is to read the input and copy it to the output, a minimal lex source program that has just "%%" shall generate a C program that simply copies the input to the output unchanged.

Four special actions shall be available:

| ECHO; REJECT; BEGIN

| The action '|' means that the action for the next rule is the action for this rule. Unlike the other three actions, '|' cannot be enclosed in braces or be <semicolon>-terminated; the application shall ensure that it is specified alone, with no other actions.

ECHO; Write the contents of the string yytext on the output.

REJECT; Usually only a single expression is matched by a given string in the input. REJECT means ``continue to the next expression that matches the current input'', and shall cause whatever rule was the second choice after the current rule to be executed for the same input. Thus, multiple rules can be matched and executed for one input string or overlapping input strings. For example, given the regular expressions "xyz" and "xy" and the input "xyz", usually only the regular expression "xyz" would match. The next attempted match would start after z. If the last action in the "xyz" rule is REJECT, both this rule and the "xy" rule would be executed. The REJECT action may be implemented in such a fashion that flow of control does not continue after it, as if it were equivalent to a goto to another part of yylex(). The use of REJECT may result in somewhat larger and slower scanners.

BEGIN The action:

BEGIN newstate;

switches the state (start condition) to newstate. If the string newstate has not been declared previously as a start condition in the Definitions section, the results are unspecified. The initial state is indicated by the digit '0' or the token INITIAL.

The functions or macros described below are accessible to user code included in the lex input. It is unspecified whether they appear in the C code output of lex, or are accessible only through the -l l operand to c99 (the lex library).

int yylex(void) Performs lexical analysis on the input; this is the primary function generated by the lex utility. The function shall return zero when the end of input is reached; otherwise, it shall return non-zero values (tokens) determined by the actions that are selected.

int yymore(void) When called, indicates that when the next input string is recognized, it is to be appended to the current value of yytext rather than replacing it; the value in yyleng shall be adjusted accordingly.

int yyless(int n) Retains n initial characters in yytext, NUL-terminated, and treats the remaining characters as if they had not been read; the value in yyleng shall be adjusted accordingly.

int input(void) Returns the next character from the input, or zero on end- of-file. It shall obtain input from the stream pointer yyin, although possibly via an intermediate buffer. Thus, once scanning has begun, the effect of altering the value of yyin is undefined. The character read shall be removed from the input stream of the scanner without any processing by the scanner.

int unput(int c) Returns the character 'c' to the input; yytext and yyleng are undefined until the next expression is matched. The result of using unput() for more characters than have been input is unspecified.

The following functions shall appear only in the lex library accessible through the -l l operand; they can therefore be redefined by a conforming application:

int yywrap(void) Called by yylex() at end-of-file; the default yywrap() shall always return 1. If the application requires yylex() to continue processing with another source of input, then the application can include a function yywrap(), which associates another file with the external variable FILE * yyin and shall return a value of zero.

int main(int argc, char *argv[]) Calls yylex() to perform lexical analysis, then exits. The user code can contain main() to perform application- specific operations, calling yylex() as applicable.

Except for input(), unput(), and main(), all external and static names generated by lex shall begin with the prefix yy or YY.