
Путь: Toys/Pending, команды версии: Ver.4 Ver.9 expr Комментарии в файле expr.c :
Исходный текст в файле expr.c // TODO: int overflow checking
#define FOR_expr
#include "toys.h"
GLOBALS(
char **tok; // current token, not on the stack since recursive calls mutate it
char *refree;
)
// Scalar value. If s != NULL, it's a string, otherwise it's an int.
struct value {
char *s;
long long i;
};
// Get the value as a string.
char *get_str(struct value *v)
{
if (v->s) return v->s;
else return xmprintf("%lld", v->i);
}
// Get the value as an integer and return 1, or return 0 on error.
int get_int(struct value *v, long long *ret)
{
if (v->s) {
char *endp;
*ret = strtoll(v->s, &endp, 10);
if (*endp) return 0; // If endp points to NUL, all chars were converted
} else *ret = v->i;
return 1;
}
// Preserve the invariant that v.s is NULL when the value is an integer.
void assign_int(struct value *v, long long i)
{
v->i = i;
v->s = NULL;
}
// Check if v is 0 or the empty string.
static int is_false(struct value *v)
{
return get_int(v, &v->i) && !v->i;
}
// 'ret' is filled with a string capture or int match position.
static void re(char *target, char *pattern, struct value *ret)
{
regex_t pat;
regmatch_t m[2];
xregcomp(&pat, pattern, 0);
// must match at pos 0
if (!regexec(&pat, target, 2, m, 0) && !m[0].rm_so) {
// Return first parenthesized subexpression as string, or length of match
if (pat.re_nsub>0) {
ret->s = xmprintf("%.*s", (int)(m[1].rm_eo-m[1].rm_so),
target+m[1].rm_so);
if (TT.refree) free(TT.refree);
TT.refree = ret->s;
} else assign_int(ret, m[0].rm_eo);
} else {
if (pat.re_nsub>0) ret->s = "";
else assign_int(ret, 0);
}
regfree(&pat);
}
// 4 different signatures of operators. S = string, I = int, SI = string or
// int.
enum { SI_TO_SI = 1, SI_TO_I, I_TO_I, S_TO_SI };
enum { OR = 1, AND, EQ, NE, GT, GTE, LT, LTE, ADD, SUB, MUL, DIVI, MOD, RE };
// operators grouped by precedence
static struct op_def {
char *tok;
char prec, sig, op; // precedence, signature for type coercion, operator ID
} OPS[] = {
// logical ops, precedence 1 and 2, signature SI_TO_SI
{"|", 1, SI_TO_SI, OR },
{"&", 2, SI_TO_SI, AND },
// comparison ops, precedence 3, signature SI_TO_I
{"=", 3, SI_TO_I, EQ }, {"==", 3, SI_TO_I, EQ }, {"!=", 3, SI_TO_I, NE },
{">", 3, SI_TO_I, GT }, {">=", 3, SI_TO_I, GTE },
{"<", 3, SI_TO_I, LT }, {"<=", 3, SI_TO_I, LTE },
// arithmetic ops, precedence 4 and 5, signature I_TO_I
{"+", 4, I_TO_I, ADD }, {"-", 4, I_TO_I, SUB },
{"*", 5, I_TO_I, MUL }, {"/", 5, I_TO_I, DIVI }, {"%", 5, I_TO_I, MOD },
// regex match, precedence 6, signature S_TO_SI
{":", 6, S_TO_SI, RE },
{NULL, 0, 0, 0}, // sentinel
};
void eval_op(struct op_def *o, struct value *ret, struct value *rhs)
{
long long a, b, x = 0; // x = a OP b for ints.
char *s, *t; // string operands
int cmp;
switch (o->sig) {
case SI_TO_SI:
switch (o->op) {
case OR: if (is_false(ret)) *ret = *rhs; break;
case AND: if (is_false(ret) || is_false(rhs)) assign_int(ret, 0); break;
}
break;
case SI_TO_I:
if (get_int(ret, &a) && get_int(rhs, &b)) { // both are ints
cmp = a - b;
} else { // otherwise compare both as strings
cmp = strcmp(s = get_str(ret), t = get_str(rhs));
if (ret->s != s) free(s);
if (rhs->s != t) free(t);
}
switch (o->op) {
case EQ: x = cmp == 0; break;
case NE: x = cmp != 0; break;
case GT: x = cmp > 0; break;
case GTE: x = cmp >= 0; break;
case LT: x = cmp < 0; break;
case LTE: x = cmp <= 0; break;
}
assign_int(ret, x);
break;
case I_TO_I:
if (!get_int(ret, &a) || !get_int(rhs, &b))
error_exit("non-integer argument");
switch (o->op) {
case ADD: x = a + b; break;
case SUB: x = a - b; break;
case MUL: x = a * b; break;
case DIVI: if (b == 0) error_exit("division by zero"); x = a / b; break;
case MOD: if (b == 0) error_exit("division by zero"); x = a % b; break;
}
assign_int(ret, x);
break;
case S_TO_SI: // op == RE
s = get_str(ret);
cmp = ret->s!=s; // ret overwritten by re so check now
re(s, t = get_str(rhs), ret);
if (cmp) free(s);
if (rhs->s!=t) free(t);
break;
}
}
// Evalute a compound expression using recursive "Precedence Climbing"
// algorithm, setting 'ret'.
static void eval_expr(struct value *ret, int min_prec)
{
if (!*TT.tok) error_exit("Unexpected end of input");
// Evaluate LHS atom, setting 'ret'.
if (!strcmp(*TT.tok, "(")) { // parenthesized expression
TT.tok++; // consume (
eval_expr(ret, 1); // We're inside ( ), so min_prec = 1
if (ret->s && !strcmp(ret->s, ")")) error_exit("empty ( )");
if (!*TT.tok) error_exit("Expected )");
if (strcmp(*TT.tok, ")")) error_exit("Expected ) but got %s", *TT.tok);
} else ret->s = *TT.tok; // simple literal, all values start as strings
TT.tok++;
// Evaluate RHS and apply operator until precedence is too low.
struct value rhs;
while (*TT.tok) {
struct op_def *o = OPS;
while (o->tok) { // Look up operator
if (!strcmp(*TT.tok, o->tok)) break;
o++;
}
if (!o->tok) break; // Not an operator (extra input will fail later)
if (o->prec < min_prec) break; // Precedence too low, pop a stack frame
TT.tok++;
eval_expr(&rhs, o->prec + 1); // Evaluate RHS, with higher min precedence
eval_op(o, ret, &rhs); // Apply operator, setting 'ret'
}
}
void expr_main(void)
{
struct value ret = {0};
toys.exitval = 2; // if exiting early, indicate error
TT.tok = toys.optargs; // initialize global token
eval_expr(&ret, 1);
if (*TT.tok) error_exit("Unexpected extra input '%s'\n", *TT.tok);
if (ret.s) printf("%s\n", ret.s);
else printf("%lld\n", ret.i);
toys.exitval = is_false(&ret);
if (TT.refree) free(TT.refree);
} |
![]() |