Путь: Toys/Pending, команды версии: Ver.4 Ver.9 xzcat Комментарии в файле xzcat.c :
Исходный текст в файле xzcat.c #define FOR_xzcat #include "toys.h" // BEGIN xz.h /** * enum xz_ret - Return codes * @XZ_OK: Everything is OK so far. More input or more * output space is required to continue. * @XZ_STREAM_END: Operation finished successfully. * @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding * is still possible in multi-call mode by simply * calling xz_dec_run() again. * Note that this return value is used only if * XZ_DEC_ANY_CHECK was defined at build time, * which is not used in the kernel. Unsupported * check types return XZ_OPTIONS_ERROR if * XZ_DEC_ANY_CHECK was not defined at build time. * @XZ_MEM_ERROR: Allocating memory failed. The amount of memory * that was tried to be allocated was no more than the * dict_max argument given to xz_dec_init(). * @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than * allowed by the dict_max argument given to * xz_dec_init(). * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic * bytes). * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested * compression options. In the decoder this means * that the header CRC32 matches, but the header * itself specifies something that we don't support. * @XZ_DATA_ERROR: Compressed data is corrupt. * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly * different between multi-call and single-call * mode; more information below. * * XZ_BUF_ERROR is returned when two consecutive calls to XZ code cannot * consume any input and cannot produce any new output. This happens when * there is no new input available, or the output buffer is full while at * least one output byte is still pending. Assuming your code is not buggy, * you can get this error only when decoding a compressed stream that is * truncated or otherwise corrupt. */ enum xz_ret { XZ_OK, XZ_STREAM_END, XZ_UNSUPPORTED_CHECK, XZ_MEM_ERROR, XZ_MEMLIMIT_ERROR, XZ_FORMAT_ERROR, XZ_OPTIONS_ERROR, XZ_DATA_ERROR, XZ_BUF_ERROR }; /** * struct xz_buf - Passing input and output buffers to XZ code * @in: Beginning of the input buffer. This may be NULL if and only * if in_pos is equal to in_size. * @in_pos: Current position in the input buffer. This must not exceed * in_size. * @in_size: Size of the input buffer * @out: Beginning of the output buffer. This may be NULL if and only * if out_pos is equal to out_size. * @out_pos: Current position in the output buffer. This must not exceed * out_size. * @out_size: Size of the output buffer * * Only the contents of the output buffer from out[out_pos] onward, and * the variables in_pos and out_pos are modified by the XZ code. */ struct xz_buf { const uint8_t *in; size_t in_pos; size_t in_size; uint8_t *out; size_t out_pos; size_t out_size; }; /** * struct xz_dec - Opaque type to hold the XZ decoder state */ struct xz_dec; /** * xz_dec_init() - Allocate and initialize a XZ decoder state * @mode: Operation mode * @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for * multi-call decoding. LZMA2 dictionary is always 2^n bytes * or 2^n + 2^(n-1) bytes (the latter sizes are less common * in practice), so other values for dict_max don't make sense. * In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB, * 512 KiB, and 1 MiB are probably the only reasonable values, * except for kernel and initramfs images where a bigger * dictionary can be fine and useful. * * dict_max specifies the maximum allowed dictionary size that xz_dec_run() * may allocate once it has parsed the dictionary size from the stream * headers. This way excessive allocations can be avoided while still * limiting the maximum memory usage to a sane value to prevent running the * system out of memory when decompressing streams from untrusted sources. * * On success, xz_dec_init() returns a pointer to struct xz_dec, which is * ready to be used with xz_dec_run(). If memory allocation fails, * xz_dec_init() returns NULL. */ struct xz_dec *xz_dec_init(uint32_t dict_max); /** * xz_dec_run() - Run the XZ decoder * @s: Decoder state allocated using xz_dec_init() * @b: Input and output buffers * * The possible return values depend on build options and operation mode. * See enum xz_ret for details. * * Note that if an error occurs in single-call mode (return value is not * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the * contents of the output buffer from b->out[b->out_pos] onward are * undefined. This is true even after XZ_BUF_ERROR, because with some filter * chains, there may be a second pass over the output buffer, and this pass * cannot be properly done if the output buffer is truncated. Thus, you * cannot give the single-call decoder a too small buffer and then expect to * get that amount valid data from the beginning of the stream. You must use * the multi-call decoder if you don't want to uncompress the whole stream. */ enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b); /** * xz_dec_reset() - Reset an already allocated decoder state * @s: Decoder state allocated using xz_dec_init() * * This function can be used to reset the multi-call decoder state without * freeing and reallocating memory with xz_dec_end() and xz_dec_init(). * * In single-call mode, xz_dec_reset() is always called in the beginning of * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in * multi-call mode. */ void xz_dec_reset(struct xz_dec *s); /** * xz_dec_end() - Free the memory allocated for the decoder state * @s: Decoder state allocated using xz_dec_init(). If s is NULL, * this function does nothing. */ void xz_dec_end(struct xz_dec *s); /* * Update CRC32 value using the polynomial from IEEE-802.3. To start a new * calculation, the third argument must be zero. To continue the calculation, * the previously returned value is passed as the third argument. */ static uint32_t xz_crc32_table[256]; uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc) { crc = ~crc; while (size != 0) { crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8); --size; } return ~crc; } static uint64_t xz_crc64_table[256]; // END xz.h static uint8_t in[BUFSIZ]; static uint8_t out[BUFSIZ]; void do_xzcat(int fd, char *name) { struct xz_buf b; struct xz_dec *s; enum xz_ret ret; const char *msg; crc_init(xz_crc32_table, 1); const uint64_t poly = 0xC96C5795D7870F42ULL; uint32_t i; uint32_t j; uint64_t r; /* initialize CRC64 table*/ for (i = 0; i < 256; ++i) { r = i; for (j = 0; j < 8; ++j) r = (r >> 1) ^ (poly & ~((r & 1) - 1)); xz_crc64_table[i] = r; } /* * Support up to 64 MiB dictionary. The actually needed memory * is allocated once the headers have been parsed. */ s = xz_dec_init(1 << 26); if (s == NULL) { msg = "Memory allocation failed\n"; goto error; } b.in = in; b.in_pos = 0; b.in_size = 0; b.out = out; b.out_pos = 0; b.out_size = BUFSIZ; for (;;) { if (b.in_pos == b.in_size) { b.in_size = read(fd, in, sizeof(in)); b.in_pos = 0; } ret = xz_dec_run(s, &b); if (b.out_pos == sizeof(out)) { if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) { msg = "Write error\n"; goto error; } b.out_pos = 0; } if (ret == XZ_OK) continue; if (ret == XZ_UNSUPPORTED_CHECK) continue; if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) { msg = "Write error\n"; goto error; } switch (ret) { case XZ_STREAM_END: xz_dec_end(s); return; case XZ_MEM_ERROR: msg = "Memory allocation failed\n"; goto error; case XZ_MEMLIMIT_ERROR: msg = "Memory usage limit reached\n"; goto error; case XZ_FORMAT_ERROR: msg = "Not a .xz file\n"; goto error; case XZ_OPTIONS_ERROR: msg = "Unsupported options in the .xz headers\n"; goto error; case XZ_DATA_ERROR: case XZ_BUF_ERROR: msg = "File is corrupt\n"; goto error; default: msg = "Bug!\n"; goto error; } } error: xz_dec_end(s); error_exit("%s", msg); } void xzcat_main(void) { loopfiles(toys.optargs, do_xzcat); } // BEGIN xz_private.h /* Uncomment as needed to enable BCJ filter decoders. * These cost about 2.5 k when all are enabled; SPARC and IA64 make 0.7 k * */ #define XZ_DEC_X86 #define XZ_DEC_POWERPC #define XZ_DEC_IA64 #define XZ_DEC_ARM #define XZ_DEC_ARMTHUMB #define XZ_DEC_SPARC #define memeq(a, b, size) (memcmp(a, b, size) == 0) /* Inline functions to access unaligned unsigned 32-bit integers */ #ifndef get_unaligned_le32 static inline uint32_t get_unaligned_le32(const uint8_t *buf) { return (uint32_t)buf[0] | ((uint32_t)buf[1] << 8) | ((uint32_t)buf[2] << 16) | ((uint32_t)buf[3] << 24); } #endif #ifndef get_unaligned_be32 static inline uint32_t get_unaligned_be32(const uint8_t *buf) { return (uint32_t)(buf[0] << 24) | ((uint32_t)buf[1] << 16) | ((uint32_t)buf[2] << 8) | (uint32_t)buf[3]; } #endif #ifndef put_unaligned_le32 static inline void put_unaligned_le32(uint32_t val, uint8_t *buf) { buf[0] = (uint8_t)val; buf[1] = (uint8_t)(val >> 8); buf[2] = (uint8_t)(val >> 16); buf[3] = (uint8_t)(val >> 24); } #endif #ifndef put_unaligned_be32 static inline void put_unaligned_be32(uint32_t val, uint8_t *buf) { buf[0] = (uint8_t)(val >> 24); buf[1] = (uint8_t)(val >> 16); buf[2] = (uint8_t)(val >> 8); buf[3] = (uint8_t)val; } #endif /* * Use get_unaligned_le32() also for aligned access for simplicity. On * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr)) * could save a few bytes in code size. */ #ifndef get_le32 # define get_le32 get_unaligned_le32 #endif /* * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ. * XZ_DEC_BCJ is used to enable generic support for BCJ decoders. */ #ifndef XZ_DEC_BCJ # if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \ || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \ || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \ || defined(XZ_DEC_SPARC) # define XZ_DEC_BCJ # endif #endif /* * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used * before calling xz_dec_lzma2_run(). */ struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max); /* * Decode the LZMA2 properties (one byte) and reset the decoder. Return * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not * big enough, and XZ_OPTIONS_ERROR if props indicates something that this * decoder doesn't support. */ enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props); /* Decode raw LZMA2 stream from b->in to b->out. */ enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, struct xz_buf *b); // END "xz_private.h" /* * Branch/Call/Jump (BCJ) filter decoders * The rest of the code is inside this ifdef. It makes things a little more * convenient when building without support for any BCJ filters. */ #ifdef XZ_DEC_BCJ struct xz_dec_bcj { /* Type of the BCJ filter being used */ enum { BCJ_X86 = 4, /* x86 or x86-64 */ BCJ_POWERPC = 5, /* Big endian only */ BCJ_IA64 = 6, /* Big or little endian */ BCJ_ARM = 7, /* Little endian only */ BCJ_ARMTHUMB = 8, /* Little endian only */ BCJ_SPARC = 9 /* Big or little endian */ } type; /* * Return value of the next filter in the chain. We need to preserve * this information across calls, because we must not call the next * filter anymore once it has returned XZ_STREAM_END. */ enum xz_ret ret; /* * Absolute position relative to the beginning of the uncompressed * data (in a single .xz Block). We care only about the lowest 32 * bits so this doesn't need to be uint64_t even with big files. */ uint32_t pos; /* x86 filter state */ uint32_t x86_prev_mask; /* Temporary space to hold the variables from struct xz_buf */ uint8_t *out; size_t out_pos; size_t out_size; struct { /* Amount of already filtered data in the beginning of buf */ size_t filtered; /* Total amount of data currently stored in buf */ size_t size; /* * Buffer to hold a mix of filtered and unfiltered data. This * needs to be big enough to hold Alignment + 2 * Look-ahead: * * Type Alignment Look-ahead * x86 1 4 * PowerPC 4 0 * IA-64 16 0 * ARM 4 0 * ARM-Thumb 2 2 * SPARC 4 0 */ uint8_t buf[16]; } temp; }; /* * Decode the Filter ID of a BCJ filter. This implementation doesn't * support custom start offsets, so no decoding of Filter Properties * is needed. Returns XZ_OK if the given Filter ID is supported. * Otherwise XZ_OPTIONS_ERROR is returned. */ enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id); /* * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run() * must be called directly. */ enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, struct xz_dec_lzma2 *lzma2, struct xz_buf *b); #ifdef XZ_DEC_X86 /* * This is used to test the most significant byte of a memory address * in an x86 instruction. */ static inline int bcj_x86_test_msbyte(uint8_t b) { return b == 0x00 || b == 0xFF; } static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { static const int mask_to_allowed_status[8] = { 1,1,1,0,1,0,0,0 }; static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; size_t i; size_t prev_pos = (size_t)-1; uint32_t prev_mask = s->x86_prev_mask; uint32_t src; uint32_t dest; uint32_t j; uint8_t b; if (size <= 4) return 0; size -= 4; for (i = 0; i < size; ++i) { if ((buf[i] & 0xFE) != 0xE8) continue; prev_pos = i - prev_pos; if (prev_pos > 3) { prev_mask = 0; } else { prev_mask = (prev_mask << (prev_pos - 1)) & 7; if (prev_mask != 0) { b = buf[i + 4 - mask_to_bit_num[prev_mask]]; if (!mask_to_allowed_status[prev_mask] || bcj_x86_test_msbyte(b)) { prev_pos = i; prev_mask = (prev_mask << 1) | 1; continue; } } } prev_pos = i; if (bcj_x86_test_msbyte(buf[i + 4])) { src = get_unaligned_le32(buf + i + 1); for (;;) { dest = src - (s->pos + (uint32_t)i + 5); if (prev_mask == 0) break; j = mask_to_bit_num[prev_mask] * 8; b = (uint8_t)(dest >> (24 - j)); if (!bcj_x86_test_msbyte(b)) break; src = dest ^ (((uint32_t)1 << (32 - j)) - 1); } dest &= 0x01FFFFFF; dest |= (uint32_t)0 - (dest & 0x01000000); put_unaligned_le32(dest, buf + i + 1); i += 4; } else { prev_mask = (prev_mask << 1) | 1; } } prev_pos = i - prev_pos; s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1); return i; } #endif #ifdef XZ_DEC_POWERPC static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t instr; for (i = 0; i + 4 <= size; i += 4) { instr = get_unaligned_be32(buf + i); if ((instr & 0xFC000003) == 0x48000001) { instr &= 0x03FFFFFC; instr -= s->pos + (uint32_t)i; instr &= 0x03FFFFFC; instr |= 0x48000001; put_unaligned_be32(instr, buf + i); } } return i; } #endif #ifdef XZ_DEC_IA64 static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { static const uint8_t branch_table[32] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 6, 6, 0, 0, 7, 7, 4, 4, 0, 0, 4, 4, 0, 0 }; /* * The local variables take a little bit stack space, but it's less * than what LZMA2 decoder takes, so it doesn't make sense to reduce * stack usage here without doing that for the LZMA2 decoder too. */ /* Loop counters */ size_t i; size_t j; /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */ uint32_t slot; /* Bitwise offset of the instruction indicated by slot */ uint32_t bit_pos; /* bit_pos split into byte and bit parts */ uint32_t byte_pos; uint32_t bit_res; /* Address part of an instruction */ uint32_t addr; /* Mask used to detect which instructions to convert */ uint32_t mask; /* 41-bit instruction stored somewhere in the lowest 48 bits */ uint64_t instr; /* Instruction normalized with bit_res for easier manipulation */ uint64_t norm; for (i = 0; i + 16 <= size; i += 16) { mask = branch_table[buf[i] & 0x1F]; for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) { if (((mask >> slot) & 1) == 0) continue; byte_pos = bit_pos >> 3; bit_res = bit_pos & 7; instr = 0; for (j = 0; j < 6; ++j) instr |= (uint64_t)(buf[i + j + byte_pos]) << (8 * j); norm = instr >> bit_res; if (((norm >> 37) & 0x0F) == 0x05 && ((norm >> 9) & 0x07) == 0) { addr = (norm >> 13) & 0x0FFFFF; addr |= ((uint32_t)(norm >> 36) & 1) << 20; addr <<= 4; addr -= s->pos + (uint32_t)i; addr >>= 4; norm &= ~((uint64_t)0x8FFFFF << 13); norm |= (uint64_t)(addr & 0x0FFFFF) << 13; norm |= (uint64_t)(addr & 0x100000) << (36 - 20); instr &= (1 << bit_res) - 1; instr |= norm << bit_res; for (j = 0; j < 6; j++) buf[i + j + byte_pos] = (uint8_t)(instr >> (8 * j)); } } } return i; } #endif #ifdef XZ_DEC_ARM static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t addr; for (i = 0; i + 4 <= size; i += 4) { if (buf[i + 3] == 0xEB) { addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) | ((uint32_t)buf[i + 2] << 16); addr <<= 2; addr -= s->pos + (uint32_t)i + 8; addr >>= 2; buf[i] = (uint8_t)addr; buf[i + 1] = (uint8_t)(addr >> 8); buf[i + 2] = (uint8_t)(addr >> 16); } } return i; } #endif #ifdef XZ_DEC_ARMTHUMB static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t addr; for (i = 0; i + 4 <= size; i += 2) { if ((buf[i + 1] & 0xF8) == 0xF0 && (buf[i + 3] & 0xF8) == 0xF8) { addr = (((uint32_t)buf[i + 1] & 0x07) << 19) | ((uint32_t)buf[i] << 11) | (((uint32_t)buf[i + 3] & 0x07) << 8) | (uint32_t)buf[i + 2]; addr <<= 1; addr -= s->pos + (uint32_t)i + 4; addr >>= 1; buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07)); buf[i] = (uint8_t)(addr >> 11); buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07)); buf[i + 2] = (uint8_t)addr; i += 2; } } return i; } #endif #ifdef XZ_DEC_SPARC static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) { size_t i; uint32_t instr; for (i = 0; i + 4 <= size; i += 4) { instr = get_unaligned_be32(buf + i); if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) { instr <<= 2; instr -= s->pos + (uint32_t)i; instr >>= 2; instr = ((uint32_t)0x40000000 - (instr & 0x400000)) | 0x40000000 | (instr & 0x3FFFFF); put_unaligned_be32(instr, buf + i); } } return i; } #endif /* * Apply the selected BCJ filter. Update *pos and s->pos to match the amount * of data that got filtered. * * NOTE: This is implemented as a switch statement to avoid using function * pointers, which could be problematic in the kernel boot code, which must * avoid pointers to static data (at least on x86). */ static void bcj_apply(struct xz_dec_bcj *s, uint8_t *buf, size_t *pos, size_t size) { size_t filtered; buf += *pos; size -= *pos; switch (s->type) { #ifdef XZ_DEC_X86 case BCJ_X86: filtered = bcj_x86(s, buf, size); break; #endif #ifdef XZ_DEC_POWERPC case BCJ_POWERPC: filtered = bcj_powerpc(s, buf, size); break; #endif #ifdef XZ_DEC_IA64 case BCJ_IA64: filtered = bcj_ia64(s, buf, size); break; #endif #ifdef XZ_DEC_ARM case BCJ_ARM: filtered = bcj_arm(s, buf, size); break; #endif #ifdef XZ_DEC_ARMTHUMB case BCJ_ARMTHUMB: filtered = bcj_armthumb(s, buf, size); break; #endif #ifdef XZ_DEC_SPARC case BCJ_SPARC: filtered = bcj_sparc(s, buf, size); break; #endif default: /* Never reached but silence compiler warnings. */ filtered = 0; break; } *pos += filtered; s->pos += filtered; } /* * Flush pending filtered data from temp to the output buffer. * Move the remaining mixture of possibly filtered and unfiltered * data to the beginning of temp. */ static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b) { size_t copy_size; copy_size = minof(s->temp.filtered, b->out_size - b->out_pos); memcpy(b->out + b->out_pos, s->temp.buf, copy_size); b->out_pos += copy_size; s->temp.filtered -= copy_size; s->temp.size -= copy_size; memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size); } /* * The BCJ filter functions are primitive in sense that they process the * data in chunks of 1-16 bytes. To hide this issue, this function does * some buffering. */ enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, struct xz_dec_lzma2 *lzma2, struct xz_buf *b) { size_t out_start; /* * Flush pending already filtered data to the output buffer. Return * immediatelly if we couldn't flush everything, or if the next * filter in the chain had already returned XZ_STREAM_END. */ if (s->temp.filtered > 0) { bcj_flush(s, b); if (s->temp.filtered > 0) return XZ_OK; if (s->ret == XZ_STREAM_END) return XZ_STREAM_END; } /* * If we have more output space than what is currently pending in * temp, copy the unfiltered data from temp to the output buffer * and try to fill the output buffer by decoding more data from the * next filter in the chain. Apply the BCJ filter on the new data * in the output buffer. If everything cannot be filtered, copy it * to temp and rewind the output buffer position accordingly. * * This needs to be always run when temp.size == 0 to handle a special * case where the output buffer is full and the next filter has no * more output coming but hasn't returned XZ_STREAM_END yet. */ if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) { out_start = b->out_pos; memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size); b->out_pos += s->temp.size; s->ret = xz_dec_lzma2_run(lzma2, b); if (s->ret != XZ_STREAM_END && (s->ret != XZ_OK )) return s->ret; bcj_apply(s, b->out, &out_start, b->out_pos); /* * As an exception, if the next filter returned XZ_STREAM_END, * we can do that too, since the last few bytes that remain * unfiltered are meant to remain unfiltered. */ if (s->ret == XZ_STREAM_END) return XZ_STREAM_END; s->temp.size = b->out_pos - out_start; b->out_pos -= s->temp.size; memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size); /* * If there wasn't enough input to the next filter to fill * the output buffer with unfiltered data, there's no point * to try decoding more data to temp. */ if (b->out_pos + s->temp.size < b->out_size) return XZ_OK; } /* * We have unfiltered data in temp. If the output buffer isn't full * yet, try to fill the temp buffer by decoding more data from the * next filter. Apply the BCJ filter on temp. Then we hopefully can * fill the actual output buffer by copying filtered data from temp. * A mix of filtered and unfiltered data may be left in temp; it will * be taken care on the next call to this function. */ if (b->out_pos < b->out_size) { /* Make b->out{,_pos,_size} temporarily point to s->temp. */ s->out = b->out; s->out_pos = b->out_pos; s->out_size = b->out_size; b->out = s->temp.buf; b->out_pos = s->temp.size; b->out_size = sizeof(s->temp.buf); s->ret = xz_dec_lzma2_run(lzma2, b); s->temp.size = b->out_pos; b->out = s->out; b->out_pos = s->out_pos; b->out_size = s->out_size; if (s->ret != XZ_OK && s->ret != XZ_STREAM_END) return s->ret; bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size); /* * If the next filter returned XZ_STREAM_END, we mark that * everything is filtered, since the last unfiltered bytes * of the stream are meant to be left as is. */ if (s->ret == XZ_STREAM_END) s->temp.filtered = s->temp.size; bcj_flush(s, b); if (s->temp.filtered > 0) return XZ_OK; } return s->ret; } enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id) { switch (id) { #ifdef XZ_DEC_X86 case BCJ_X86: #endif #ifdef XZ_DEC_POWERPC case BCJ_POWERPC: #endif #ifdef XZ_DEC_IA64 case BCJ_IA64: #endif #ifdef XZ_DEC_ARM case BCJ_ARM: #endif #ifdef XZ_DEC_ARMTHUMB case BCJ_ARMTHUMB: #endif #ifdef XZ_DEC_SPARC case BCJ_SPARC: #endif break; default: /* Unsupported Filter ID */ return XZ_OPTIONS_ERROR; } s->type = id; s->ret = XZ_OK; s->pos = 0; s->x86_prev_mask = 0; s->temp.filtered = 0; s->temp.size = 0; return XZ_OK; } #endif /* * LZMA2 decoder */ // BEGIN xz_lzma2.h /* * LZMA2 definitions * */ /* Range coder constants */ #define RC_SHIFT_BITS 8 #define RC_TOP_BITS 24 #define RC_TOP_VALUE (1 << RC_TOP_BITS) #define RC_BIT_MODEL_TOTAL_BITS 11 #define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS) #define RC_MOVE_BITS 5 /* * Maximum number of position states. A position state is the lowest pb * number of bits of the current uncompressed offset. In some places there * are different sets of probabilities for different position states. */ #define POS_STATES_MAX (1 << 4) /* * This enum is used to track which LZMA symbols have occurred most recently * and in which order. This information is used to predict the next symbol. * * Symbols: * - Literal: One 8-bit byte * - Match: Repeat a chunk of data at some distance * - Long repeat: Multi-byte match at a recently seen distance * - Short repeat: One-byte repeat at a recently seen distance * * The symbol names are in from STATE_oldest_older_previous. REP means * either short or long repeated match, and NONLIT means any non-literal. */ enum lzma_state { STATE_LIT_LIT, STATE_MATCH_LIT_LIT, STATE_REP_LIT_LIT, STATE_SHORTREP_LIT_LIT, STATE_MATCH_LIT, STATE_REP_LIT, STATE_SHORTREP_LIT, STATE_LIT_MATCH, STATE_LIT_LONGREP, STATE_LIT_SHORTREP, STATE_NONLIT_MATCH, STATE_NONLIT_REP }; /* Total number of states */ #define STATES 12 /* The lowest 7 states indicate that the previous state was a literal. */ #define LIT_STATES 7 /* Indicate that the latest symbol was a literal. */ static inline void lzma_state_literal(enum lzma_state *state) { if (*state <= STATE_SHORTREP_LIT_LIT) *state = STATE_LIT_LIT; else if (*state <= STATE_LIT_SHORTREP) *state -= 3; else *state -= 6; } /* Indicate that the latest symbol was a match. */ static inline void lzma_state_match(enum lzma_state *state) { *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH; } /* Indicate that the latest state was a long repeated match. */ static inline void lzma_state_long_rep(enum lzma_state *state) { *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP; } /* Indicate that the latest symbol was a short match. */ static inline void lzma_state_short_rep(enum lzma_state *state) { *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP; } /* Test if the previous symbol was a literal. */ static inline int lzma_state_is_literal(enum lzma_state state) { return state < LIT_STATES; } /* Each literal coder is divided in three sections: * - 0x001-0x0FF: Without match byte * - 0x101-0x1FF: With match byte; match bit is 0 * - 0x201-0x2FF: With match byte; match bit is 1 * * Match byte is used when the previous LZMA symbol was something else than * a literal (that is, it was some kind of match). */ #define LITERAL_CODER_SIZE 0x300 /* Maximum number of literal coders */ #define LITERAL_CODERS_MAX (1 << 4) /* Minimum length of a match is two bytes. */ #define MATCH_LEN_MIN 2 /* Match length is encoded with 4, 5, or 10 bits. * * Length Bits * 2-9 4 = Choice=0 + 3 bits * 10-17 5 = Choice=1 + Choice2=0 + 3 bits * 18-273 10 = Choice=1 + Choice2=1 + 8 bits */ #define LEN_LOW_BITS 3 #define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS) #define LEN_MID_BITS 3 #define LEN_MID_SYMBOLS (1 << LEN_MID_BITS) #define LEN_HIGH_BITS 8 #define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS) #define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS) /* * Maximum length of a match is 273 which is a result of the encoding * described above. */ #define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1) /* * Different sets of probabilities are used for match distances that have * very short match length: Lengths of 2, 3, and 4 bytes have a separate * set of probabilities for each length. The matches with longer length * use a shared set of probabilities. */ #define DIST_STATES 4 /* * Get the index of the appropriate probability array for decoding * the distance slot. */ static inline uint32_t lzma_get_dist_state(uint32_t len) { return len < DIST_STATES + MATCH_LEN_MIN ? len - MATCH_LEN_MIN : DIST_STATES - 1; } /* * The highest two bits of a 32-bit match distance are encoded using six bits. * This six-bit value is called a distance slot. This way encoding a 32-bit * value takes 6-36 bits, larger values taking more bits. */ #define DIST_SLOT_BITS 6 #define DIST_SLOTS (1 << DIST_SLOT_BITS) /* Match distances up to 127 are fully encoded using probabilities. Since * the highest two bits (distance slot) are always encoded using six bits, * the distances 0-3 don't need any additional bits to encode, since the * distance slot itself is the same as the actual distance. DIST_MODEL_START * indicates the first distance slot where at least one additional bit is * needed. */ #define DIST_MODEL_START 4 /* * Match distances greater than 127 are encoded in three pieces: * - distance slot: the highest two bits * - direct bits: 2-26 bits below the highest two bits * - alignment bits: four lowest bits * * Direct bits don't use any probabilities. * * The distance slot value of 14 is for distances 128-191. */ #define DIST_MODEL_END 14 /* Distance slots that indicate a distance <= 127. */ #define FULL_DISTANCES_BITS (DIST_MODEL_END / 2) #define FULL_DISTANCES (1 << FULL_DISTANCES_BITS) /* * For match distances greater than 127, only the highest two bits and the * lowest four bits (alignment) is encoded using probabilities. */ #define ALIGN_BITS 4 #define ALIGN_SIZE (1 << ALIGN_BITS) #define ALIGN_MASK (ALIGN_SIZE - 1) /* Total number of all probability variables */ #define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE) /* * LZMA remembers the four most recent match distances. Reusing these * distances tends to take less space than re-encoding the actual * distance value. */ #define REPS 4 // END xz_lzma2.h /* * Range decoder initialization eats the first five bytes of each LZMA chunk. */ #define RC_INIT_BYTES 5 /* * Minimum number of usable input buffer to safely decode one LZMA symbol. * The worst case is that we decode 22 bits using probabilities and 26 * direct bits. This may decode at maximum of 20 bytes of input. However, * lzma_main() does an extra normalization before returning, thus we * need to put 21 here. */ #define LZMA_IN_REQUIRED 21 /* * Dictionary (history buffer) * * These are always true: * start <= pos <= full <= end * pos <= limit <= end * end == size * size <= size_max * allocated <= size * * Most of these variables are size_t as a relic of single-call mode, * in which the dictionary variables address the actual output * buffer directly. */ struct dictionary { /* Beginning of the history buffer */ uint8_t *buf; /* Old position in buf (before decoding more data) */ size_t start; /* Position in buf */ size_t pos; /* * How full dictionary is. This is used to detect corrupt input that * would read beyond the beginning of the uncompressed stream. */ size_t full; /* Write limit; we don't write to buf[limit] or later bytes. */ size_t limit; /* End of the dictionary buffer. This is the same as the dictionary size. */ size_t end; /* * Size of the dictionary as specified in Block Header. This is used * together with "full" to detect corrupt input that would make us * read beyond the beginning of the uncompressed stream. */ uint32_t size; /* * Maximum allowed dictionary size. */ uint32_t size_max; /* * Amount of memory currently allocated for the dictionary. */ uint32_t allocated; }; /* Range decoder */ struct rc_dec { uint32_t range; uint32_t code; /* * Number of initializing bytes remaining to be read * by rc_read_init(). */ uint32_t init_bytes_left; /* * Buffer from which we read our input. It can be either * temp.buf or the caller-provided input buffer. */ const uint8_t *in; size_t in_pos; size_t in_limit; }; /* Probabilities for a length decoder. */ struct lzma_len_dec { /* Probability of match length being at least 10 */ uint16_t choice; /* Probability of match length being at least 18 */ uint16_t choice2; /* Probabilities for match lengths 2-9 */ uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; /* Probabilities for match lengths 10-17 */ uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; /* Probabilities for match lengths 18-273 */ uint16_t high[LEN_HIGH_SYMBOLS]; }; struct lzma_dec { /* Distances of latest four matches */ uint32_t rep0; uint32_t rep1; uint32_t rep2; uint32_t rep3; /* Types of the most recently seen LZMA symbols */ enum lzma_state state; /* * Length of a match. This is updated so that dict_repeat can * be called again to finish repeating the whole match. */ uint32_t len; /* * LZMA properties or related bit masks (number of literal * context bits, a mask dervied from the number of literal * position bits, and a mask dervied from the number * position bits) */ uint32_t lc; uint32_t literal_pos_mask; /* (1 << lp) - 1 */ uint32_t pos_mask; /* (1 << pb) - 1 */ /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ uint16_t is_match[STATES][POS_STATES_MAX]; /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ uint16_t is_rep[STATES]; /* * If 0, distance of a repeated match is rep0. * Otherwise check is_rep1. */ uint16_t is_rep0[STATES]; /* * If 0, distance of a repeated match is rep1. * Otherwise check is_rep2. */ uint16_t is_rep1[STATES]; /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ uint16_t is_rep2[STATES]; /* * If 1, the repeated match has length of one byte. Otherwise * the length is decoded from rep_len_decoder. */ uint16_t is_rep0_long[STATES][POS_STATES_MAX]; /* * Probability tree for the highest two bits of the match * distance. There is a separate probability tree for match * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. */ uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; /* * Probility trees for additional bits for match distance * when the distance is in the range [4, 127]. */ uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; /* * Probability tree for the lowest four bits of a match * distance that is equal to or greater than 128. */ uint16_t dist_align[ALIGN_SIZE]; /* Length of a normal match */ struct lzma_len_dec match_len_dec; /* Length of a repeated match */ struct lzma_len_dec rep_len_dec; /* Probabilities of literals */ uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; }; struct lzma2_dec { /* Position in xz_dec_lzma2_run(). */ enum lzma2_seq { SEQ_CONTROL, SEQ_UNCOMPRESSED_1, SEQ_UNCOMPRESSED_2, SEQ_COMPRESSED_0, SEQ_COMPRESSED_1, SEQ_PROPERTIES, SEQ_LZMA_PREPARE, SEQ_LZMA_RUN, SEQ_COPY } sequence; /* Next position after decoding the compressed size of the chunk. */ enum lzma2_seq next_sequence; /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ uint32_t uncompressed; /* * Compressed size of LZMA chunk or compressed/uncompressed * size of uncompressed chunk (64 KiB at maximum) */ uint32_t compressed; /* * True if dictionary reset is needed. This is false before * the first chunk (LZMA or uncompressed). */ int need_dict_reset; /* * True if new LZMA properties are needed. This is false * before the first LZMA chunk. */ int need_props; }; struct xz_dec_lzma2 { /* * The order below is important on x86 to reduce code size and * it shouldn't hurt on other platforms. Everything up to and * including lzma.pos_mask are in the first 128 bytes on x86-32, * which allows using smaller instructions to access those * variables. On x86-64, fewer variables fit into the first 128 * bytes, but this is still the best order without sacrificing * the readability by splitting the structures. */ struct rc_dec rc; struct dictionary dict; struct lzma2_dec lzma2; struct lzma_dec lzma; /* * Temporary buffer which holds small number of input bytes between * decoder calls. See lzma2_lzma() for details. */ struct { uint32_t size; uint8_t buf[3 * LZMA_IN_REQUIRED]; } temp; }; /************** * Dictionary * **************/ /* Reset the dictionary state. */ static void dict_reset(struct dictionary *dict) { dict->start = 0; dict->pos = 0; dict->limit = 0; dict->full = 0; } /* Set dictionary write limit */ static void dict_limit(struct dictionary *dict, size_t out_max) { if (dict->end - dict->pos <= out_max) dict->limit = dict->end; else dict->limit = dict->pos + out_max; } /* Return true if at least one byte can be written into the dictionary. */ static inline int dict_has_space(const struct dictionary *dict) { return dict->pos < dict->limit; } /* * Get a byte from the dictionary at the given distance. The distance is * assumed to valid, or as a special case, zero when the dictionary is * still empty. This special case is needed for single-call decoding to * avoid writing a '\0' to the end of the destination buffer. */ static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) { size_t offset = dict->pos - dist - 1; if (dist >= dict->pos) offset += dict->end; return dict->full > 0 ? dict->buf[offset] : 0; } /* * Put one byte into the dictionary. It is assumed that there is space for it. */ static inline void dict_put(struct dictionary *dict, uint8_t byte) { dict->buf[dict->pos++] = byte; if (dict->full < dict->pos) dict->full = dict->pos; } /* * Repeat given number of bytes from the given distance. If the distance is * invalid, false is returned. On success, true is returned and *len is * updated to indicate how many bytes were left to be repeated. */ static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) { size_t back; uint32_t left; if (dist >= dict->full || dist >= dict->size) return 0; left = minof(dict->limit - dict->pos, *len); *len -= left; back = dict->pos - dist - 1; if (dist >= dict->pos) back += dict->end; do { dict->buf[dict->pos++] = dict->buf[back++]; if (back == dict->end) back = 0; } while (--left > 0); if (dict->full < dict->pos) dict->full = dict->pos; return 1; } /* Copy uncompressed data as is from input to dictionary and output buffers. */ static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, uint32_t *left) { size_t copy_size; while (*left > 0 && b->in_pos < b->in_size && b->out_pos < b->out_size) { copy_size = minof(b->in_size - b->in_pos, b->out_size - b->out_pos); if (copy_size > dict->end - dict->pos) copy_size = dict->end - dict->pos; if (copy_size > *left) copy_size = *left; *left -= copy_size; memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size); dict->pos += copy_size; if (dict->full < dict->pos) dict->full = dict->pos; if (dict->pos == dict->end) dict->pos = 0; memcpy(b->out + b->out_pos, b->in + b->in_pos, copy_size); dict->start = dict->pos; b->out_pos += copy_size; b->in_pos += copy_size; } } /* * Flush pending data from dictionary to b->out. It is assumed that there is * enough space in b->out. This is guaranteed because caller uses dict_limit() * before decoding data into the dictionary. */ static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) { size_t copy_size = dict->pos - dict->start; if (dict->pos == dict->end) dict->pos = 0; memcpy(b->out + b->out_pos, dict->buf + dict->start, copy_size); dict->start = dict->pos; b->out_pos += copy_size; return copy_size; } /***************** * Range decoder * *****************/ /* Reset the range decoder. */ static void rc_reset(struct rc_dec *rc) { rc->range = (uint32_t)-1; rc->code = 0; rc->init_bytes_left = RC_INIT_BYTES; } /* * Read the first five initial bytes into rc->code if they haven't been * read already. (Yes, the first byte gets completely ignored.) */ static int rc_read_init(struct rc_dec *rc, struct xz_buf *b) { while (rc->init_bytes_left > 0) { if (b->in_pos == b->in_size) return 0; rc->code = (rc->code << 8) + b->in[b->in_pos++]; --rc->init_bytes_left; } return 1; } /* Return true if there may not be enough input for the next decoding loop. */ static inline int rc_limit_exceeded(const struct rc_dec *rc) { return rc->in_pos > rc->in_limit; } /* * Return true if it is possible (from point of view of range decoder) that * we have reached the end of the LZMA chunk. */ static inline int rc_is_finished(const struct rc_dec *rc) { return rc->code == 0; } /* Read the next input byte if needed. */ static inline void rc_normalize(struct rc_dec *rc) { if (rc->range < RC_TOP_VALUE) { rc->range <<= RC_SHIFT_BITS; rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; } } /* * Decode one bit. In some versions, this function has been splitted in three * functions so that the compiler is supposed to be able to more easily avoid * an extra branch. In this particular version of the LZMA decoder, this * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 * on x86). Using a non-splitted version results in nicer looking code too. * * NOTE: This must return an int. Do not make it return a bool or the speed * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) */ static inline int rc_bit(struct rc_dec *rc, uint16_t *prob) { uint32_t bound; int bit; rc_normalize(rc); bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; if (rc->code < bound) { rc->range = bound; *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; bit = 0; } else { rc->range -= bound; rc->code -= bound; *prob -= *prob >> RC_MOVE_BITS; bit = 1; } return bit; } /* Decode a bittree starting from the most significant bit. */ static inline uint32_t rc_bittree(struct rc_dec *rc, uint16_t *probs, uint32_t limit) { uint32_t symbol = 1; do { if (rc_bit(rc, &probs[symbol])) symbol = (symbol << 1) + 1; else symbol <<= 1; } while (symbol < limit); return symbol; } /* Decode a bittree starting from the least significant bit. */ static inline void rc_bittree_reverse(struct rc_dec *rc, uint16_t *probs, uint32_t *dest, uint32_t limit) { uint32_t symbol = 1; uint32_t i = 0; do { if (rc_bit(rc, &probs[symbol])) { symbol = (symbol << 1) + 1; *dest += 1 << i; } else { symbol <<= 1; } } while (++i < limit); } /* Decode direct bits (fixed fifty-fifty probability) */ static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) { uint32_t mask; do { rc_normalize(rc); rc->range >>= 1; rc->code -= rc->range; mask = (uint32_t)0 - (rc->code >> 31); rc->code += rc->range & mask; *dest = (*dest << 1) + (mask + 1); } while (--limit > 0); } /******** * LZMA * ********/ /* Get pointer to literal coder probability array. */ static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) { uint32_t prev_byte = dict_get(&s->dict, 0); uint32_t low = prev_byte >> (8 - s->lzma.lc); uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; return s->lzma.literal[low + high]; } /* Decode a literal (one 8-bit byte) */ static void lzma_literal(struct xz_dec_lzma2 *s) { uint16_t *probs; uint32_t symbol; uint32_t match_byte; uint32_t match_bit; uint32_t offset; uint32_t i; probs = lzma_literal_probs(s); if (lzma_state_is_literal(s->lzma.state)) { symbol = rc_bittree(&s->rc, probs, 0x100); } else { symbol = 1; match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; offset = 0x100; do { match_bit = match_byte & offset; match_byte <<= 1; i = offset + match_bit + symbol; if (rc_bit(&s->rc, &probs[i])) { symbol = (symbol << 1) + 1; offset &= match_bit; } else { symbol <<= 1; offset &= ~match_bit; } } while (symbol < 0x100); } dict_put(&s->dict, (uint8_t)symbol); lzma_state_literal(&s->lzma.state); } /* Decode the length of the match into s->lzma.len. */ static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, uint32_t pos_state) { uint16_t *probs; uint32_t limit; if (!rc_bit(&s->rc, &l->choice)) { probs = l->low[pos_state]; limit = LEN_LOW_SYMBOLS; s->lzma.len = MATCH_LEN_MIN; } else { if (!rc_bit(&s->rc, &l->choice2)) { probs = l->mid[pos_state]; limit = LEN_MID_SYMBOLS; s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; } else { probs = l->high; limit = LEN_HIGH_SYMBOLS; s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; } } s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; } /* Decode a match. The distance will be stored in s->lzma.rep0. */ static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) { uint16_t *probs; uint32_t dist_slot; uint32_t limit; lzma_state_match(&s->lzma.state); s->lzma.rep3 = s->lzma.rep2; s->lzma.rep2 = s->lzma.rep1; s->lzma.rep1 = s->lzma.rep0; lzma_len(s, &s->lzma.match_len_dec, pos_state); probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; if (dist_slot < DIST_MODEL_START) { s->lzma.rep0 = dist_slot; } else { limit = (dist_slot >> 1) - 1; s->lzma.rep0 = 2 + (dist_slot & 1); if (dist_slot < DIST_MODEL_END) { s->lzma.rep0 <<= limit; probs = s->lzma.dist_special + s->lzma.rep0 - dist_slot - 1; rc_bittree_reverse(&s->rc, probs, &s->lzma.rep0, limit); } else { rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); s->lzma.rep0 <<= ALIGN_BITS; rc_bittree_reverse(&s->rc, s->lzma.dist_align, &s->lzma.rep0, ALIGN_BITS); } } } /* * Decode a repeated match. The distance is one of the four most recently * seen matches. The distance will be stored in s->lzma.rep0. */ static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) { uint32_t tmp; if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ s->lzma.state][pos_state])) { lzma_state_short_rep(&s->lzma.state); s->lzma.len = 1; return; } } else { if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { tmp = s->lzma.rep1; } else { if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { tmp = s->lzma.rep2; } else { tmp = s->lzma.rep3; s->lzma.rep3 = s->lzma.rep2; } s->lzma.rep2 = s->lzma.rep1; } s->lzma.rep1 = s->lzma.rep0; s->lzma.rep0 = tmp; } lzma_state_long_rep(&s->lzma.state); lzma_len(s, &s->lzma.rep_len_dec, pos_state); } /* LZMA decoder core */ static int lzma_main(struct xz_dec_lzma2 *s) { uint32_t pos_state; /* * If the dictionary was reached during the previous call, try to * finish the possibly pending repeat in the dictionary. */ if (dict_has_space(&s->dict) && s->lzma.len > 0) dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); /* * Decode more LZMA symbols. One iteration may consume up to * LZMA_IN_REQUIRED - 1 bytes. */ while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { pos_state = s->dict.pos & s->lzma.pos_mask; if (!rc_bit(&s->rc, &s->lzma.is_match[ s->lzma.state][pos_state])) { lzma_literal(s); } else { if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) lzma_rep_match(s, pos_state); else lzma_match(s, pos_state); if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) return 0; } } /* * Having the range decoder always normalized when we are outside * this function makes it easier to correctly handle end of the chunk. */ rc_normalize(&s->rc); return 1; } /* * Reset the LZMA decoder and range decoder state. Dictionary is nore reset * here, because LZMA state may be reset without resetting the dictionary. */ static void lzma_reset(struct xz_dec_lzma2 *s) { uint16_t *probs; size_t i; s->lzma.state = STATE_LIT_LIT; s->lzma.rep0 = 0; s->lzma.rep1 = 0; s->lzma.rep2 = 0; s->lzma.rep3 = 0; /* * All probabilities are initialized to the same value. This hack * makes the code smaller by avoiding a separate loop for each * probability array. * * This could be optimized so that only that part of literal * probabilities that are actually required. In the common case * we would write 12 KiB less. */ probs = s->lzma.is_match[0]; for (i = 0; i < PROBS_TOTAL; ++i) probs[i] = RC_BIT_MODEL_TOTAL / 2; rc_reset(&s->rc); } /* * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks * from the decoded lp and pb values. On success, the LZMA decoder state is * reset and true is returned. */ static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props) { if (props > (4 * 5 + 4) * 9 + 8) return 0; s->lzma.pos_mask = 0; while (props >= 9 * 5) { props -= 9 * 5; ++s->lzma.pos_mask; } s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; s->lzma.literal_pos_mask = 0; while (props >= 9) { props -= 9; ++s->lzma.literal_pos_mask; } s->lzma.lc = props; if (s->lzma.lc + s->lzma.literal_pos_mask > 4) return 0; s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; lzma_reset(s); return 1; } /********* * LZMA2 * *********/ /* * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This * wrapper function takes care of making the LZMA decoder's assumption safe. * * As long as there is plenty of input left to be decoded in the current LZMA * chunk, we decode directly from the caller-supplied input buffer until * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into * s->temp.buf, which (hopefully) gets filled on the next call to this * function. We decode a few bytes from the temporary buffer so that we can * continue decoding from the caller-supplied input buffer again. */ static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) { size_t in_avail; uint32_t tmp; in_avail = b->in_size - b->in_pos; if (s->temp.size > 0 || s->lzma2.compressed == 0) { tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; if (tmp > s->lzma2.compressed - s->temp.size) tmp = s->lzma2.compressed - s->temp.size; if (tmp > in_avail) tmp = in_avail; memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); if (s->temp.size + tmp == s->lzma2.compressed) { memset(s->temp.buf + s->temp.size + tmp, 0, sizeof(s->temp.buf) - s->temp.size - tmp); s->rc.in_limit = s->temp.size + tmp; } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { s->temp.size += tmp; b->in_pos += tmp; return 1; } else { s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; } s->rc.in = s->temp.buf; s->rc.in_pos = 0; if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) return 0; s->lzma2.compressed -= s->rc.in_pos; if (s->rc.in_pos < s->temp.size) { s->temp.size -= s->rc.in_pos; memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, s->temp.size); return 1; } b->in_pos += s->rc.in_pos - s->temp.size; s->temp.size = 0; } in_avail = b->in_size - b->in_pos; if (in_avail >= LZMA_IN_REQUIRED) { s->rc.in = b->in; s->rc.in_pos = b->in_pos; if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) s->rc.in_limit = b->in_pos + s->lzma2.compressed; else s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; if (!lzma_main(s)) return 0; in_avail = s->rc.in_pos - b->in_pos; if (in_avail > s->lzma2.compressed) return 0; s->lzma2.compressed -= in_avail; b->in_pos = s->rc.in_pos; } in_avail = b->in_size - b->in_pos; if (in_avail < LZMA_IN_REQUIRED) { if (in_avail > s->lzma2.compressed) in_avail = s->lzma2.compressed; memcpy(s->temp.buf, b->in + b->in_pos, in_avail); s->temp.size = in_avail; b->in_pos += in_avail; } return 1; } /* * Take care of the LZMA2 control layer, and forward the job of actual LZMA * decoding or copying of uncompressed chunks to other functions. */ enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, struct xz_buf *b) { uint32_t tmp; while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { switch (s->lzma2.sequence) { case SEQ_CONTROL: /* * LZMA2 control byte * * Exact values: * 0x00 End marker * 0x01 Dictionary reset followed by * an uncompressed chunk * 0x02 Uncompressed chunk (no dictionary reset) * * Highest three bits (s->control & 0xE0): * 0xE0 Dictionary reset, new properties and state * reset, followed by LZMA compressed chunk * 0xC0 New properties and state reset, followed * by LZMA compressed chunk (no dictionary * reset) * 0xA0 State reset using old properties, * followed by LZMA compressed chunk (no * dictionary reset) * 0x80 LZMA chunk (no dictionary or state reset) * * For LZMA compressed chunks, the lowest five bits * (s->control & 1F) are the highest bits of the * uncompressed size (bits 16-20). * * A new LZMA2 stream must begin with a dictionary * reset. The first LZMA chunk must set new * properties and reset the LZMA state. * * Values that don't match anything described above * are invalid and we return XZ_DATA_ERROR. */ tmp = b->in[b->in_pos++]; if (tmp == 0x00) return XZ_STREAM_END; if (tmp >= 0xE0 || tmp == 0x01) { s->lzma2.need_props = 1; s->lzma2.need_dict_reset = 0; dict_reset(&s->dict); } else if (s->lzma2.need_dict_reset) { return XZ_DATA_ERROR; } if (tmp >= 0x80) { s->lzma2.uncompressed = (tmp & 0x1F) << 16; s->lzma2.sequence = SEQ_UNCOMPRESSED_1; if (tmp >= 0xC0) { /* * When there are new properties, * state reset is done at * SEQ_PROPERTIES. */ s->lzma2.need_props = 0; s->lzma2.next_sequence = SEQ_PROPERTIES; } else if (s->lzma2.need_props) { return XZ_DATA_ERROR; } else { s->lzma2.next_sequence = SEQ_LZMA_PREPARE; if (tmp >= 0xA0) lzma_reset(s); } } else { if (tmp > 0x02) return XZ_DATA_ERROR; s->lzma2.sequence = SEQ_COMPRESSED_0; s->lzma2.next_sequence = SEQ_COPY; } break; case SEQ_UNCOMPRESSED_1: s->lzma2.uncompressed += (uint32_t)b->in[b->in_pos++] << 8; s->lzma2.sequence = SEQ_UNCOMPRESSED_2; break; case SEQ_UNCOMPRESSED_2: s->lzma2.uncompressed += (uint32_t)b->in[b->in_pos++] + 1; s->lzma2.sequence = SEQ_COMPRESSED_0; break; case SEQ_COMPRESSED_0: s->lzma2.compressed = (uint32_t)b->in[b->in_pos++] << 8; s->lzma2.sequence = SEQ_COMPRESSED_1; break; case SEQ_COMPRESSED_1: s->lzma2.compressed += (uint32_t)b->in[b->in_pos++] + 1; s->lzma2.sequence = s->lzma2.next_sequence; break; case SEQ_PROPERTIES: if (!lzma_props(s, b->in[b->in_pos++])) return XZ_DATA_ERROR; s->lzma2.sequence = SEQ_LZMA_PREPARE; case SEQ_LZMA_PREPARE: if (s->lzma2.compressed < RC_INIT_BYTES) return XZ_DATA_ERROR; if (!rc_read_init(&s->rc, b)) return XZ_OK; s->lzma2.compressed -= RC_INIT_BYTES; s->lzma2.sequence = SEQ_LZMA_RUN; case SEQ_LZMA_RUN: /* * Set dictionary limit to indicate how much we want * to be encoded at maximum. Decode new data into the * dictionary. Flush the new data from dictionary to * b->out. Check if we finished decoding this chunk. * In case the dictionary got full but we didn't fill * the output buffer yet, we may run this loop * multiple times without changing s->lzma2.sequence. */ dict_limit(&s->dict, minof(b->out_size - b->out_pos, s->lzma2.uncompressed)); if (!lzma2_lzma(s, b)) return XZ_DATA_ERROR; s->lzma2.uncompressed -= dict_flush(&s->dict, b); if (s->lzma2.uncompressed == 0) { if (s->lzma2.compressed > 0 || s->lzma.len > 0 || !rc_is_finished(&s->rc)) return XZ_DATA_ERROR; rc_reset(&s->rc); s->lzma2.sequence = SEQ_CONTROL; } else if (b->out_pos == b->out_size || (b->in_pos == b->in_size && s->temp.size < s->lzma2.compressed)) { return XZ_OK; } break; case SEQ_COPY: dict_uncompressed(&s->dict, b, &s->lzma2.compressed); if (s->lzma2.compressed > 0) return XZ_OK; s->lzma2.sequence = SEQ_CONTROL; break; } } return XZ_OK; } struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max) { struct xz_dec_lzma2 *s = malloc(sizeof(*s)); if (s == NULL) return NULL; s->dict.size_max = dict_max; s->dict.buf = NULL; s->dict.allocated = 0; return s; } enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) { /* This limits dictionary size to 3 GiB to keep parsing simpler. */ if (props > 39) return XZ_OPTIONS_ERROR; s->dict.size = 2 + (props & 1); s->dict.size <<= (props >> 1) + 11; if (s->dict.size > s->dict.size_max) return XZ_MEMLIMIT_ERROR; s->dict.end = s->dict.size; if (s->dict.allocated < s->dict.size) { free(s->dict.buf); s->dict.buf = malloc(s->dict.size); if (s->dict.buf == NULL) { s->dict.allocated = 0; return XZ_MEM_ERROR; } } s->lzma.len = 0; s->lzma2.sequence = SEQ_CONTROL; s->lzma2.need_dict_reset = 1; s->temp.size = 0; return XZ_OK; } /* * .xz Stream decoder */ // BEGIN xz_stream.h /* * Definitions for handling the .xz file format */ /* * See the .xz file format specification at * http://tukaani.org/xz/xz-file-format.txt * to understand the container format. */ #define STREAM_HEADER_SIZE 12 #define HEADER_MAGIC "\3757zXZ" #define HEADER_MAGIC_SIZE 6 #define FOOTER_MAGIC "YZ" #define FOOTER_MAGIC_SIZE 2 /* * Variable-length integer can hold a 63-bit unsigned integer or a special * value indicating that the value is unknown. * * Experimental: vli_type can be defined to uint32_t to save a few bytes * in code size (no effect on speed). Doing so limits the uncompressed and * compressed size of the file to less than 256 MiB and may also weaken * error detection slightly. */ typedef uint64_t vli_type; #define VLI_MAX ((vli_type)-1 / 2) #define VLI_UNKNOWN ((vli_type)-1) /* Maximum encoded size of a VLI */ #define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7) /* Integrity Check types */ enum xz_check { XZ_CHECK_NONE = 0, XZ_CHECK_CRC32 = 1, XZ_CHECK_CRC64 = 4, XZ_CHECK_SHA256 = 10 }; /* Maximum possible Check ID */ #define XZ_CHECK_MAX 15 // END xz_stream.h #define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64) /* Hash used to validate the Index field */ struct xz_dec_hash { vli_type unpadded; vli_type uncompressed; uint32_t crc32; }; struct xz_dec { /* Position in dec_main() */ enum { SEQ_STREAM_HEADER, SEQ_BLOCK_START, SEQ_BLOCK_HEADER, SEQ_BLOCK_UNCOMPRESS, SEQ_BLOCK_PADDING, SEQ_BLOCK_CHECK, SEQ_INDEX, SEQ_INDEX_PADDING, SEQ_INDEX_CRC32, SEQ_STREAM_FOOTER } sequence; /* Position in variable-length integers and Check fields */ uint32_t pos; /* Variable-length integer decoded by dec_vli() */ vli_type vli; /* Saved in_pos and out_pos */ size_t in_start; size_t out_start; /* CRC32 or CRC64 value in Block or CRC32 value in Index */ uint64_t crc; /* Type of the integrity check calculated from uncompressed data */ enum xz_check check_type; /* * True if the next call to xz_dec_run() is allowed to return * XZ_BUF_ERROR. */ int allow_buf_error; /* Information stored in Block Header */ struct { /* * Value stored in the Compressed Size field, or * VLI_UNKNOWN if Compressed Size is not present. */ vli_type compressed; /* * Value stored in the Uncompressed Size field, or * VLI_UNKNOWN if Uncompressed Size is not present. */ vli_type uncompressed; /* Size of the Block Header field */ uint32_t size; } block_header; /* Information collected when decoding Blocks */ struct { /* Observed compressed size of the current Block */ vli_type compressed; /* Observed uncompressed size of the current Block */ vli_type uncompressed; /* Number of Blocks decoded so far */ vli_type count; /* * Hash calculated from the Block sizes. This is used to * validate the Index field. */ struct xz_dec_hash hash; } block; /* Variables needed when verifying the Index field */ struct { /* Position in dec_index() */ enum { SEQ_INDEX_COUNT, SEQ_INDEX_UNPADDED, SEQ_INDEX_UNCOMPRESSED } sequence; /* Size of the Index in bytes */ vli_type size; /* Number of Records (matches block.count in valid files) */ vli_type count; /* * Hash calculated from the Records (matches block.hash in * valid files). */ struct xz_dec_hash hash; } index; /* * Temporary buffer needed to hold Stream Header, Block Header, * and Stream Footer. The Block Header is the biggest (1 KiB) * so we reserve space according to that. buf[] has to be aligned * to a multiple of four bytes; the size_t variables before it * should guarantee this. */ struct { size_t pos; size_t size; uint8_t buf[1024]; } temp; struct xz_dec_lzma2 *lzma2; #ifdef XZ_DEC_BCJ struct xz_dec_bcj *bcj; int bcj_active; #endif }; /* Sizes of the Check field with different Check IDs */ static const uint8_t check_sizes[16] = { 0, 4, 4, 4, 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64, 64 }; /* * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller * must have set s->temp.pos to indicate how much data we are suppos |