Справочник по консольным командам Toybox для Android 12


  Ver.0.8.4     Ver.0.8.9     Pending  

Путь: Toys/Other, команды версии: Ver.4     Ver.9

Комментарии в файле bzcat.c :

Команд: 2


bunzip2

usage: bunzip2 [-cftkv] [FILE...]

Распакуйте перечисленные файлы (file.bz становится файлом), удалив архивные файлы. Читать со стандартного ввода, если нет файлов в списке.
  • -c Принудительно вывести вывод на стандартный
  • -f вывод Принудительно распаковать (если ФАЙЛ не заканчивается на .bz, заменить исходный)
  • -k Сохранить входные файлы (-c и -t подразумевают это)
  • -t Проверить целостность
  • -v Подробно

  • usage: bunzip2 [-cftkv] [FILE...]

    Decompress listed files (file.bz becomes file) deleting archive file(s). Read from stdin if no files listed.
  • -c Force output to stdout
  • -f Force decompression (if FILE doesn't end in .bz, replace original)
  • -k Keep input files (-c and -t imply this)
  • -t Test integrity
  • -v Verbose

  • bzcat

    usage: bzcat [FILE...]

    Распаковать перечисленные файлы в stdout. Используйте стандартный ввод, если в списке нет файлов.


    usage: bzcat [FILE...]

    Decompress listed files to stdout. Use stdin if no files listed.


    Исходный текст в файле bzcat.c

    #define FOR_bunzip2
    #include "toys.h"
    
    #define THREADS 1
    
    // Constants for huffman coding
    #define MAX_GROUPS               6
    #define GROUP_SIZE               50     /* 64 would have been more efficient */
    #define MAX_HUFCODE_BITS         20     /* Longest huffman code allowed */
    #define MAX_SYMBOLS              258    /* 256 literals + RUNA + RUNB */
    #define SYMBOL_RUNA              0
    #define SYMBOL_RUNB              1
    
    // Other housekeeping constants
    #define IOBUF_SIZE               4096
    
    // Status return values
    #define RETVAL_LAST_BLOCK        (-100)
    #define RETVAL_NOT_BZIP_DATA     (-1)
    #define RETVAL_DATA_ERROR        (-2)
    #define RETVAL_OBSOLETE_INPUT    (-3)
    
    // This is what we know about each huffman coding group
    struct group_data {
      int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS];
      char minLen, maxLen;
    };
    
    // Data for burrows wheeler transform
    
    struct bwdata {
      unsigned int origPtr;
      int byteCount[256];
      // State saved when interrupting output
      int writePos, writeRun, writeCount, writeCurrent;
      unsigned int dataCRC, headerCRC;
      unsigned int *dbuf;
    };
    
    // Structure holding all the housekeeping data, including IO buffers and
    // memory that persists between calls to bunzip
    struct bunzip_data {
      // Input stream, input buffer, input bit buffer
      int in_fd, inbufCount, inbufPos;
      char *inbuf;
      unsigned int inbufBitCount, inbufBits;
    
      // Output buffer
      char outbuf[IOBUF_SIZE];
      int outbufPos;
    
      unsigned int totalCRC;
    
      // First pass decompression data (Huffman and MTF decoding)
      char selectors[32768];                  // nSelectors=15 bits
      struct group_data groups[MAX_GROUPS];   // huffman coding tables
      int symTotal, groupCount, nSelectors;
      unsigned char symToByte[256], mtfSymbol[256];
    
      // The CRC values stored in the block header and calculated from the data
      unsigned int crc32Table[256];
    
      // Second pass decompression data (burrows-wheeler transform)
      unsigned int dbufSize;
      struct bwdata bwdata[THREADS];
    };
    
    // Return the next nnn bits of input.  All reads from the compressed input
    // are done through this function.  All reads are big endian.
    static unsigned int get_bits(struct bunzip_data *bd, char bits_wanted)
    {
      unsigned int bits = 0;
    
      // If we need to get more data from the byte buffer, do so.  (Loop getting
      // one byte at a time to enforce endianness and avoid unaligned access.)
      while (bd->inbufBitCount < bits_wanted) {
    
        // If we need to read more data from file into byte buffer, do so
        if (bd->inbufPos == bd->inbufCount) {
          if (0 >= (bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
            error_exit("input EOF");
          bd->inbufPos = 0;
        }
    
        // Avoid 32-bit overflow (dump bit buffer to top of output)
        if (bd->inbufBitCount>=24) {
          bits = bd->inbufBits&((1<<bd->inbufBitCount)-1);
          bits_wanted -= bd->inbufBitCount;
          bits <<= bits_wanted;
          bd->inbufBitCount = 0;
        }
    
        // Grab next 8 bits of input from buffer.
        bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++];
        bd->inbufBitCount += 8;
      }
    
      // Calculate result
      bd->inbufBitCount -= bits_wanted;
      bits |= (bd->inbufBits>>bd->inbufBitCount) & ((1<<bits_wanted)-1);
    
      return bits;
    }
    
    /* Read block header at start of a new compressed data block.  Consists of:
     *
     * 48 bits : Block signature, either pi (data block) or e (EOF block).
     * 32 bits : bw->headerCRC
     * 1  bit  : obsolete feature flag.
     * 24 bits : origPtr (Burrows-wheeler unwind index, only 20 bits ever used)
     * 16 bits : Mapping table index.
     *[16 bits]: symToByte[symTotal] (Mapping table.  For each bit set in mapping
     *           table index above, read another 16 bits of mapping table data.
     *           If correspondig bit is unset, all bits in that mapping table
     *           section are 0.)
     *  3 bits : groupCount (how many huffman tables used to encode, anywhere
     *           from 2 to MAX_GROUPS)
     * variable: hufGroup[groupCount] (MTF encoded huffman table data.)
     */
    
    static int read_block_header(struct bunzip_data *bd, struct bwdata *bw)
    {
      struct group_data *hufGroup;
      int hh, ii, jj, kk, symCount, *base, *limit;
      unsigned char uc;
    
      // Read in header signature and CRC (which is stored big endian)
      ii = get_bits(bd, 24);
      jj = get_bits(bd, 24);
      bw->headerCRC = get_bits(bd,32);
    
      // Is this the EOF block with CRC for whole file?  (Constant is "e")
      if (ii==0x177245 && jj==0x385090) return RETVAL_LAST_BLOCK;
    
      // Is this a valid data block?  (Constant is "pi".)
      if (ii!=0x314159 || jj!=0x265359) return RETVAL_NOT_BZIP_DATA;
    
      // We can add support for blockRandomised if anybody complains.
      if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
      if ((bw->origPtr = get_bits(bd,24)) > bd->dbufSize) return RETVAL_DATA_ERROR;
    
      // mapping table: if some byte values are never used (encoding things
      // like ascii text), the compression code removes the gaps to have fewer
      // symbols to deal with, and writes a sparse bitfield indicating which
      // values were present.  We make a translation table to convert the symbols
      // back to the corresponding bytes.
      hh = get_bits(bd, 16);
      bd->symTotal = 0;
      for (ii=0; ii<16; ii++) {
        if (hh & (1 << (15 - ii))) {
          kk = get_bits(bd, 16);
          for (jj=0; jj<16; jj++)
            if (kk & (1 << (15 - jj)))
              bd->symToByte[bd->symTotal++] = (16 * ii) + jj;
        }
      }
    
      // How many different huffman coding groups does this block use?
      bd->groupCount = get_bits(bd,3);
      if (bd->groupCount<2 || bd->groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
    
      // nSelectors: Every GROUP_SIZE many symbols we switch huffman coding
      // tables.  Each group has a selector, which is an index into the huffman
      // coding table arrays.
      //
      // Read in the group selector array, which is stored as MTF encoded
      // bit runs.  (MTF = Move To Front.  Every time a symbol occurs it's moved
      // to the front of the table, so it has a shorter encoding next time.)
      if (!(bd->nSelectors = get_bits(bd, 15))) return RETVAL_DATA_ERROR;
      for (ii=0; ii<bd->groupCount; ii++) bd->mtfSymbol[ii] = ii;
      for (ii=0; ii<bd->nSelectors; ii++) {
    
        // Get next value
        for(jj=0;get_bits(bd,1);jj++)
          if (jj>=bd->groupCount) return RETVAL_DATA_ERROR;
    
        // Decode MTF to get the next selector, and move it to the front.
        uc = bd->mtfSymbol[jj];
        memmove(bd->mtfSymbol+1, bd->mtfSymbol, jj);
        bd->mtfSymbol[0] = bd->selectors[ii] = uc;
      }
    
      // Read the huffman coding tables for each group, which code for symTotal
      // literal symbols, plus two run symbols (RUNA, RUNB)
      symCount = bd->symTotal+2;
      for (jj=0; jj<bd->groupCount; jj++) {
        unsigned char length[MAX_SYMBOLS];
        unsigned temp[MAX_HUFCODE_BITS+1];
        int minLen, maxLen, pp;
    
        // Read lengths
        hh = get_bits(bd, 5);
        for (ii = 0; ii < symCount; ii++) {
          for(;;) {
            // !hh || hh > MAX_HUFCODE_BITS in one test.
            if (MAX_HUFCODE_BITS-1 < (unsigned)hh-1) return RETVAL_DATA_ERROR;
            // Grab 2 bits instead of 1 (slightly smaller/faster).  Stop if
            // first bit is 0, otherwise second bit says whether to
            // increment or decrement.
            kk = get_bits(bd, 2);
            if (kk & 2) hh += 1 - ((kk&1)<<1);
            else {
              bd->inbufBitCount++;
              break;
            }
          }
          length[ii] = hh;
        }
    
        // Find largest and smallest lengths in this group
        minLen = maxLen = length[0];
        for (ii = 1; ii < symCount; ii++) {
          if(length[ii] > maxLen) maxLen = length[ii];
          else if(length[ii] < minLen) minLen = length[ii];
        }
    
        /* Calculate permute[], base[], and limit[] tables from length[].
         *
         * permute[] is the lookup table for converting huffman coded symbols
         * into decoded symbols.  It contains symbol values sorted by length.
         *
         * base[] is the amount to subtract from the value of a huffman symbol
         * of a given length when using permute[].
         *
         * limit[] indicates the largest numerical value a symbol with a given
         * number of bits can have.  It lets us know when to stop reading.
         *
         * To use these, keep reading bits until value <= limit[bitcount] or
         * you've read over 20 bits (error).  Then the decoded symbol
         * equals permute[hufcode_value - base[hufcode_bitcount]].
         */
        hufGroup = bd->groups+jj;
        hufGroup->minLen = minLen;
        hufGroup->maxLen = maxLen;
    
        // Note that minLen can't be smaller than 1, so we adjust the base
        // and limit array pointers so we're not always wasting the first
        // entry.  We do this again when using them (during symbol decoding).
        base = hufGroup->base-1;
        limit = hufGroup->limit-1;
    
        // zero temp[] and limit[], and calculate permute[]
        pp = 0;
        for (ii = minLen; ii <= maxLen; ii++) {
          temp[ii] = limit[ii] = 0;
          for (hh = 0; hh < symCount; hh++)
            if (length[hh] == ii) hufGroup->permute[pp++] = hh;
        }
    
        // Count symbols coded for at each bit length
        for (ii = 0; ii < symCount; ii++) temp[length[ii]]++;
    
        /* Calculate limit[] (the largest symbol-coding value at each bit
         * length, which is (previous limit<<1)+symbols at this level), and
         * base[] (number of symbols to ignore at each bit length, which is
         * limit minus the cumulative count of symbols coded for already). */
        pp = hh = 0;
        for (ii = minLen; ii < maxLen; ii++) {
          pp += temp[ii];
          limit[ii] = pp-1;
          pp <<= 1;
          base[ii+1] = pp-(hh+=temp[ii]);
        }
        limit[maxLen] = pp+temp[maxLen]-1;
        limit[maxLen+1] = INT_MAX;
        base[minLen] = 0;
      }
    
      return 0;
    }
    
    /* First pass, read block's symbols into dbuf[dbufCount].
     *
     * This undoes three types of compression: huffman coding, run length encoding,
     * and move to front encoding.  We have to undo all those to know when we've
     * read enough input.
     */
    
    static int read_huffman_data(struct bunzip_data *bd, struct bwdata *bw)
    {
      struct group_data *hufGroup;
      int ii, jj, kk, runPos, dbufCount, symCount, selector, nextSym,
        *byteCount, *base, *limit;
      unsigned hh, *dbuf = bw->dbuf;
      unsigned char uc;
    
      // We've finished reading and digesting the block header.  Now read this
      // block's huffman coded symbols from the file and undo the huffman coding
      // and run length encoding, saving the result into dbuf[dbufCount++] = uc
    
      // Initialize symbol occurrence counters and symbol mtf table
      byteCount = bw->byteCount;
      for(ii=0; ii<256; ii++) {
        byteCount[ii] = 0;
        bd->mtfSymbol[ii] = ii;
      }
    
      // Loop through compressed symbols.  This is the first "tight inner loop"
      // that needs to be micro-optimized for speed.  (This one fills out dbuf[]
      // linearly, staying in cache more, so isn't as limited by DRAM access.)
      runPos = dbufCount = symCount = selector = 0;
      // Some unnecessary initializations to shut gcc up.
      base = limit = 0;
      hufGroup = 0;
      hh = 0;
    
      for (;;) {
        // Have we reached the end of this huffman group?
        if (!(symCount--)) {
          // Determine which huffman coding group to use.
          symCount = GROUP_SIZE-1;
          if (selector >= bd->nSelectors) return RETVAL_DATA_ERROR;
          hufGroup = bd->groups + bd->selectors[selector++];
          base = hufGroup->base-1;
          limit = hufGroup->limit-1;
        }
    
        // Read next huffman-coded symbol (into jj).
        ii = hufGroup->minLen;
        jj = get_bits(bd, ii);
        while (jj > limit[ii]) {
          // if (ii > hufGroup->maxLen) return RETVAL_DATA_ERROR;
          ii++;
    
          // Unroll get_bits() to avoid a function call when the data's in
          // the buffer already.
          kk = bd->inbufBitCount
            ? (bd->inbufBits >> --(bd->inbufBitCount)) & 1 : get_bits(bd, 1);
          jj = (jj << 1) | kk;
        }
        // Huffman decode jj into nextSym (with bounds checking)
        jj-=base[ii];
    
        if (ii > hufGroup->maxLen || (unsigned)jj >= MAX_SYMBOLS)
          return RETVAL_DATA_ERROR;
        nextSym = hufGroup->permute[jj];
    
        // If this is a repeated run, loop collecting data
        if ((unsigned)nextSym <= SYMBOL_RUNB) {
          // If this is the start of a new run, zero out counter
          if(!runPos) {
            runPos = 1;
            hh = 0;
          }
    
          /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
             each bit position, add 1 or 2 instead. For example,
             1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
             You can make any bit pattern that way using 1 less symbol than
             the basic or 0/1 method (except all bits 0, which would use no
             symbols, but a run of length 0 doesn't mean anything in this
             context). Thus space is saved. */
          hh += (runPos << nextSym); // +runPos if RUNA; +2*runPos if RUNB
          runPos <<= 1;
          continue;
        }
    
        /* When we hit the first non-run symbol after a run, we now know
           how many times to repeat the last literal, so append that many
           copies to our buffer of decoded symbols (dbuf) now. (The last
           literal used is the one at the head of the mtfSymbol array.) */
        if (runPos) {
          runPos = 0;
          // Check for integer overflow
          if (hh>bd->dbufSize || dbufCount+hh>bd->dbufSize)
            return RETVAL_DATA_ERROR;
    
          uc = bd->symToByte[bd->mtfSymbol[0]];
          byteCount[uc] += hh;
          while (hh--) dbuf[dbufCount++] = uc;
        }
    
        // Is this the terminating symbol?
        if (nextSym>bd->symTotal) break;
    
        /* At this point, the symbol we just decoded indicates a new literal
           character. Subtract one to get the position in the MTF array
           at which this literal is currently to be found. (Note that the
           result can't be -1 or 0, because 0 and 1 are RUNA and RUNB.
           Another instance of the first symbol in the mtf array, position 0,
           would have been handled as part of a run.) */
        if (dbufCount>=bd->dbufSize) return RETVAL_DATA_ERROR;
        ii = nextSym - 1;
        uc = bd->mtfSymbol[ii];
        // On my laptop, unrolling this memmove() into a loop shaves 3.5% off
        // the total running time.
        while(ii--) bd->mtfSymbol[ii+1] = bd->mtfSymbol[ii];
        bd->mtfSymbol[0] = uc;
        uc = bd->symToByte[uc];
    
        // We have our literal byte.  Save it into dbuf.
        byteCount[uc]++;
        dbuf[dbufCount++] = (unsigned int)uc;
      }
    
      // Now we know what dbufCount is, do a better sanity check on origPtr.
      if (bw->origPtr >= (bw->writeCount = dbufCount)) return RETVAL_DATA_ERROR;
    
      return 0;
    }
    
    // Flush output buffer to disk
    static void flush_bunzip_outbuf(struct bunzip_data *bd, int out_fd)
    {
      if (bd->outbufPos) {
        if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
          error_exit("output EOF");
        bd->outbufPos = 0;
      }
    }
    
    static void burrows_wheeler_prep(struct bunzip_data *bd, struct bwdata *bw)
    {
      int ii, jj;
      unsigned int *dbuf = bw->dbuf;
      int *byteCount = bw->byteCount;
    
      // Turn byteCount into cumulative occurrence counts of 0 to n-1.
      jj = 0;
      for (ii=0; ii<256; ii++) {
        int kk = jj + byteCount[ii];
        byteCount[ii] = jj;
        jj = kk;
      }
    
      // Use occurrence counts to quickly figure out what order dbuf would be in
      // if we sorted it.
      for (ii=0; ii < bw->writeCount; ii++) {
        unsigned char uc = dbuf[ii];
        dbuf[byteCount[uc]] |= (ii << 8);
        byteCount[uc]++;
      }
    
      // blockRandomised support would go here.
    
      // Using ii as position, jj as previous character, hh as current character,
      // and uc as run count.
      bw->dataCRC = 0xffffffffL;
    
      /* Decode first byte by hand to initialize "previous" byte. Note that it
         doesn't get output, and if the first three characters are identical
         it doesn't qualify as a run (hence uc=255, which will either wrap
         to 1 or get reset). */
      if (bw->writeCount) {
        bw->writePos = dbuf[bw->origPtr];
        bw->writeCurrent = (unsigned char)bw->writePos;
        bw->writePos >>= 8;
        bw->writeRun = -1;
      }
    }
    
    // Decompress a block of text to intermediate buffer
    static int read_bunzip_data(struct bunzip_data *bd)
    {
      int rc = read_block_header(bd, bd->bwdata);
      if (!rc) rc=read_huffman_data(bd, bd->bwdata);
    
      // First thing that can be done by a background thread.
      burrows_wheeler_prep(bd, bd->bwdata);
    
      return rc;
    }
    
    // Undo burrows-wheeler transform on intermediate buffer to produce output.
    // If !len, write up to len bytes of data to buf.  Otherwise write to out_fd.
    // Returns len ? bytes written : 0.  Notice all errors are negative #'s.
    //
    // Burrows-wheeler transform is described at:
    // http://dogma.net/markn/articles/bwt/bwt.htm
    // http://marknelson.us/1996/09/01/bwt/
    
    static int write_bunzip_data(struct bunzip_data *bd, struct bwdata *bw,
      int out_fd, char *outbuf, int len)
    {
      unsigned int *dbuf = bw->dbuf;
      int count, pos, current, run, copies, outbyte, previous, gotcount = 0;
    
      for (;;) {
        // If last read was short due to end of file, return last block now
        if (bw->writeCount < 0) return bw->writeCount;
    
        // If we need to refill dbuf, do it.
        if (!bw->writeCount) {
          int i = read_bunzip_data(bd);
          if (i) {
            if (i == RETVAL_LAST_BLOCK) {
              bw->writeCount = i;
              return gotcount;
            } else return i;
          }
        }
    
        // loop generating output
        count = bw->writeCount;
        pos = bw->writePos;
        current = bw->writeCurrent;
        run = bw->writeRun;
        while (count) {
    
          // If somebody (like tar) wants a certain number of bytes of
          // data from memory instead of written to a file, humor them.
          if (len && bd->outbufPos >= len) goto dataus_interruptus;
          count--;
    
          // Follow sequence vector to undo Burrows-Wheeler transform.
          previous = current;
          pos = dbuf[pos];
          current = pos&0xff;
          pos >>= 8;
    
          // Whenever we see 3 consecutive copies of the same byte,
          // the 4th is a repeat count
          if (run++ == 3) {
            copies = current;
            outbyte = previous;
            current = -1;
          } else {
            copies = 1;
            outbyte = current;
          }
    
          // Output bytes to buffer, flushing to file if necessary
          while (copies--) {
            if (bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd, out_fd);
            bd->outbuf[bd->outbufPos++] = outbyte;
            bw->dataCRC = (bw->dataCRC << 8)
                    ^ bd->crc32Table[(bw->dataCRC >> 24) ^ outbyte];
          }
          if (current != previous) run=0;
        }
    
        // decompression of this block completed successfully
        bw->dataCRC = ~(bw->dataCRC);
        bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bw->dataCRC;
    
        // if this block had a crc error, force file level crc error.
        if (bw->dataCRC != bw->headerCRC) {
          bd->totalCRC = bw->headerCRC+1;
    
          return RETVAL_LAST_BLOCK;
        }
    dataus_interruptus:
        bw->writeCount = count;
        if (len) {
          gotcount += bd->outbufPos;
          memcpy(outbuf, bd->outbuf, len);
    
          // If we got enough data, checkpoint loop state and return
          if ((len -= bd->outbufPos)<1) {
            bd->outbufPos -= len;
            if (bd->outbufPos) memmove(bd->outbuf, bd->outbuf+len, bd->outbufPos);
            bw->writePos = pos;
            bw->writeCurrent = current;
            bw->writeRun = run;
    
            return gotcount;
          }
        }
      }
    }
    
    // Allocate the structure, read file header. If !len, src_fd contains
    // filehandle to read from. Else inbuf contains data.
    static int start_bunzip(struct bunzip_data **bdp, int src_fd, char *inbuf,
      int len)
    {
      struct bunzip_data *bd;
      unsigned int i;
    
      // Figure out how much data to allocate.
      i = sizeof(struct bunzip_data);
      if (!len) i += IOBUF_SIZE;
    
      // Allocate bunzip_data. Most fields initialize to zero.
      bd = *bdp = xzalloc(i);
      if (len) {
        bd->inbuf = inbuf;
        bd->inbufCount = len;
        bd->in_fd = -1;
      } else {
        bd->inbuf = (char *)(bd+1);
        bd->in_fd = src_fd;
      }
    
      crc_init(bd->crc32Table, 0);
    
      // Ensure that file starts with "BZh".
      for (i=0;i<3;i++) if (get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA;
    
      // Next byte ascii '1'-'9', indicates block size in units of 100k of
      // uncompressed data. Allocate intermediate buffer for block.
      i = get_bits(bd, 8);
      if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA;
      bd->dbufSize = 100000*(i-'0')*THREADS;
      for (i=0; i<THREADS; i++)
        bd->bwdata[i].dbuf = xmalloc(bd->dbufSize * sizeof(int));
    
      return 0;
    }
    
    // Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
    // not end of file.)
    static char *bunzipStream(int src_fd, int dst_fd)
    {
      struct bunzip_data *bd;
      char *bunzip_errors[] = {0, "not bzip", "bad data", "old format"};
      int i, j;
    
      if (!(i = start_bunzip(&bd,src_fd, 0, 0))) {
        i = write_bunzip_data(bd,bd->bwdata, dst_fd, 0, 0);
        if (i==RETVAL_LAST_BLOCK) {
          if (bd->bwdata[0].headerCRC==bd->totalCRC) i = 0;
          else i = RETVAL_DATA_ERROR;
        }
      }
      flush_bunzip_outbuf(bd, dst_fd);
    
      for (j=0; j<THREADS; j++) free(bd->bwdata[j].dbuf);
      free(bd);
    
      return bunzip_errors[-i];
    }
    
    static void do_bzcat(int fd, char *name)
    {
      char *err = bunzipStream(fd, 1);
    
      if (err) error_exit_raw(err);
    }
    
    void bzcat_main(void)
    {
      loopfiles(toys.optargs, do_bzcat);
    }
    
    static void do_bunzip2(int fd, char *name)
    {
      int outfd = 1, rename = 0, len = strlen(name);
      char *tmp, *err, *dotbz = 0;
    
      // Trim off .bz or .bz2 extension
      dotbz = name+len-3;
      if ((len>3 && !strcmp(dotbz, ".bz")) || (len>4 && !strcmp(--dotbz, ".bz2")))
        dotbz = 0;
    
      // For - no replace
      if (toys.optflags&FLAG_t) outfd = xopen("/dev/null", O_WRONLY);
      else if ((fd || strcmp(name, "-")) && !(toys.optflags&FLAG_c)) {
        if (toys.optflags&FLAG_k) {
          if (!dotbz || !access(name, X_OK)) {
            error_msg("%s exists", name);
    
            return;
          }
        }
        outfd = copy_tempfile(fd, name, &tmp);
        rename++;
      }
    
      if (toys.optflags&FLAG_v) printf("%s:", name);
      err = bunzipStream(fd, outfd);
      if (toys.optflags&FLAG_v) {
        printf("%s\n", err ? err : "ok");
        toys.exitval |= !!err;
      } else if (err) error_msg_raw(err);
    
      // can't test outfd==1 because may have been called with stdin+stdout closed
      if (rename) {
        if (toys.optflags&FLAG_k) {
          free(tmp);
          tmp = 0;
        } else {
          if (dotbz) *dotbz = '.';
          if (!unlink(name)) perror_msg_raw(name);
        }
        (err ? delete_tempfile : replace_tempfile)(-1, outfd, &tmp);
      }
    }
    
    void bunzip2_main(void)
    {
      loopfiles(toys.optargs, do_bunzip2);
    }